Publications by authors named "Hanne Kooy"

Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g.

View Article and Find Full Text PDF

Radiation vasculopathy is a well-recognized late complication of radiation therapy. We present a case of a stroke 29 years after high-dose proton radiation therapy for skull-base chordoma due to occlusion of bilateral internal carotid arteries.

View Article and Find Full Text PDF

Background: Pencil beam scanning (PBS) monitoring chambers use an ionization control signal, monitor units (MUs), or gigaprotons (Gp) to irradiate a pencil beam and normalize dose calculations. The nozzle deflects the beam from the nozzle axis by an angle subtended at the source-to-axis distance (τ) from the isocenter. If the angle is not correctly considered in calibrations or calculations, it can lead to systematic errors.

View Article and Find Full Text PDF

To adopt Monte Carlo (MC) simulations as an independent dose calculation method for proton pencil beam radiotherapy, an interface that converts the plan information in DICOM format into MC components such as geometries and beam source is a crucial element. For this purpose, a DICOM-RT Ion interface (https://github.com/topasmc/dicom-interface) has been developed and integrated into the TOPAS MC code to perform such conversions on-the-fly.

View Article and Find Full Text PDF

Purpose: Treatment planning for proton therapy requires the relative proton stopping power ratio (RSP) information of the patient for accurate dose calculations. RSP are conventionally obtained after mapping of the Hounsfield units (HU) from a calibrated patient computed tomography (CT). One or multiple CT are needed for a given treatment which represents additional, undesired dose to the patient.

View Article and Find Full Text PDF

Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties.

View Article and Find Full Text PDF

Purpose: Proton therapy can allow for superior avoidance of normal tissues. A widespread consensus has been reached that proton therapy should be used for patients with curable pediatric brain tumor to avoid critical central nervous system structures. Brainstem necrosis is a potentially devastating, but rare, complication of radiation.

View Article and Find Full Text PDF

Purpose: Proton radiation therapy is commonly used in young children with brain tumors for its potential to reduce late effects. However, some proton series report higher rates of brainstem injury (0%-16%) than most photon series (2.2%-8.

View Article and Find Full Text PDF

Background: Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility.

View Article and Find Full Text PDF

Purpose: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam.

Methods: A novel silicon microdosimeter with well-defined 3D SVs was used in this study.

View Article and Find Full Text PDF

Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma.

Methods And Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (-35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS).

View Article and Find Full Text PDF

Background: Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging.

View Article and Find Full Text PDF

Proton pencil beam scanning (PBS) treatment plans are made of numerous unique spots of different weights. These weights are optimized by the treatment planning systems, and sometimes fall below the deliverable threshold set by the treatment delivery system. The purpose of this work is to investigate a Greedy reassignment algorithm to mitigate the effects of these low weight pencil beams.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT).

Methods And Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.

View Article and Find Full Text PDF

Delivery of pencil beam scanning (PBS) requires the on-line measurement of several beam parameters. If the measurement is outside of specified tolerances and a binary threshold algorithm is used, the beam will be paused. Given instrumentation and statistical noise such a system can lead to many pauses which could increase the treatment time.

View Article and Find Full Text PDF

Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan.

Methods And Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system "Erasmus-iCycle." The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers.

View Article and Find Full Text PDF

Purpose: Postmastectomy radiation therapy (PMRT), currently offered at Massachusetts General Hospital, uses proton pencil beam scanning (PBS) with intensity modulation, achieving complete target coverage of the chest wall and all nodal regions and reduced dose to the cardiac structures. This work presents the current methodology for such treatment and the ongoing effort for its improvements.

Methods And Materials: A single PBS field is optimized to ensure appropriate target coverage and heart/lung sparing, using an in-house-developed proton planning system with the capability of multicriteria optimization.

View Article and Find Full Text PDF

Purpose: Setup, range, and anatomical uncertainties influence the dose delivered with intensity modulated proton therapy (IMPT), but clinical quantification of these errors for oropharyngeal cancer is lacking. We quantified these factors and investigated treatment fidelity, that is, robustness, as influenced by adaptive planning and by applying more beam directions.

Methods And Materials: We used an in-house treatment planning system with multicriteria optimization of pencil beam energies, directions, and weights to create treatment plans for 3-, 5-, and 7-beam directions for 10 oropharyngeal cancer patients.

View Article and Find Full Text PDF

The accuracy of intensity modulated proton therapy (IMPT) is sensitive to range uncertainties. Geometric margins, as dosimetric surrogates, are ineffective and robust optimization strategies are needed. These, however, lead to increased normal tissue dose.

View Article and Find Full Text PDF

Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties.

Methods And Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments.

View Article and Find Full Text PDF

Background And Purpose: Delivery of post-mastectomy radiation (PMRT) in women with bilateral implants represents a technical challenge, particularly when attempting to cover regional lymph nodes. Intensity modulated proton therapy (IMPT) holds the potential to improve dose delivery and spare non-target tissues. The purpose of this study was to compare IMPT to three-dimensional (3D) conformal radiation following bilateral mastectomy and reconstruction.

View Article and Find Full Text PDF

Purpose: Dosimetric planning studies have described potential benefits for the use of proton radiation therapy (RT) for locally advanced breast cancer. We report acute toxicities and feasibility of proton delivery for 12 women treated with postmastectomy proton radiation with or without reconstruction.

Methods And Materials: Twelve patients were enrolled in an institutional review board-approved prospective clinical trial.

View Article and Find Full Text PDF

Purpose: The delivery of post-mastectomy radiation therapy (PMRT) can be challenging for patients with left sided breast cancer that have undergone mastectomy. This study investigates the use of protons for PMRT in selected patients with unfavorable cardiac anatomy. We also report the first clinical application of protons for these patients.

View Article and Find Full Text PDF

Treatment planning databases for pencil beam scanning can be large, difficult to manage and problematic for quality assurance when they contain tabulated Bragg peaks at small range resolution. Smaller range resolution, in the absence of an accurate interpolation method, improves the accuracy in dose calculations. In this work, we derive an approximate scaling function to interpolate between tabulated Bragg peaks, and determine the accuracy of this interpolation technique and the minimum number of tabulated peaks in a treatment planning database.

View Article and Find Full Text PDF

The γ-index is used routinely to establish correspondence between two dose distributions. The definition of the γ-index can be written with a single equation but solving this equation at millions of points is computationally expensive, especially in three dimensions. Our goal is to extend the vector-equation method in Bakai et al (2003 Phys.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlrs0ug2d46g2p4u5dtibhr37dtp3n0c6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once