Publications by authors named "Hanne H Christiansen"

Mountain permafrost, constituting 30% of the global permafrost area, is sensitive to climate change and strongly impacts mountain ecosystems and communities. This study examines 21st century permafrost warming in European mountains using decadal ground temperature data from sixty-four boreholes in the Alps, Scandinavia, Iceland, Sierra Nevada and Svalbard. During 2013-2022, warming rates at 10 metres depth exceed 1 °C dec in cases, generally surpassing previous estimates because of accelerated warming and the use of a comprehensive data set.

View Article and Find Full Text PDF

The continuous permafrost in the valleys of Svalbard is dotted by pingos, which are small hills formed by the near surface freezing of ascending groundwater. In this study, we used H and Ra isotopes to inquire into the sub-surface residence time of groundwater discharging at these pingos. While its low H suggests that the pingo-associated groundwater is basically not modern (i.

View Article and Find Full Text PDF

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009).

View Article and Find Full Text PDF

Methane (CH) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components.

View Article and Find Full Text PDF