Aim: To explore midwives' experiences with providing home-based postpartum care during the COVID-19 pandemic in Norway.
Design: A descriptive and explorative qualitative study.
Methods: The study is based on semi-structured individual interviews with 11 midwives experienced in offering home-based postpartum care.
Type 1 diabetes (T1D) results from poorly defined interaction between susceptibility genes and environmental factors. The objective was to investigate Human Leukocyte Antigens (HLA) associated T1D risk among Pakistani newborns in Norway based on what published globally. DNA samples from 189 newborns, whose parents were first generation migrants from Pakistan, were analyzed.
View Article and Find Full Text PDFDisturbance of DNA methylation leading to aberrant gene expression has been implicated in the etiology of many diseases. Whereas variation at the genetic level has been studied extensively, less is known about the extent and function of epigenetic variation. To explore variation and heritability of DNA methylation, we performed bisulfite sequencing of 1760 CpG sites in 186 regions in the human major histocompatibility complex (MHC) in CD4+ lymphocytes from 49 monozygotic (MZ) and 40 dizygotic (DZ) twin pairs.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
October 2011
Context: A strong association between autoimmune Addison's disease (AAD) and major histocompatibility complex class II-encoded HLA-DRB1-DQA1-DQB1 haplotypes is well known. Recent evidence from other autoimmune diseases has suggested that class I-encoded HLA-A and HLA-B gene variants confer HLA-DRB1-DQA1-DQB1-independent effects on disease.
Objective: We aimed to explore AAD predisposing effects of HLA-A and -B and further investigate the role of MICA and HLA-DRB1-DQA1-DQB1 in a much larger material than has previously been studied.
Obesity has a strong genetic etiology involving numerous identified metabolic pathways and others not yet examined. We investigated the association between severe obesity and genetic variation in selected candidate genes, including three drug-related genes: cannabinoid receptor 1 (CNR1), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), and gastric lipase (LIPF); and three genes related to inflammation: nicotinamide phosphoribosyltransferase, six-transmembrane epithelial antigen of the prostate 4 (STEAP4) and interleukin 18 (IL-18). Subjects were 1,632 individuals with severe obesity (BMI ≥ 35 kg/m²) and 3,379 controls (BMI 20-24.
View Article and Find Full Text PDFWe have previously mapped a separate type 1 diabetes (T1D) association in the extended MHC class I region, marked by D6S2223, on the DRB1*03-DQA1*0501-DQB1*0201 haplotype. The associated region encompasses a gene encoding a thymus-specific serine protease (PRSS16), presumably involved in positive selection of T cells or in T-cell regulation. Fourteen PRSS16 polymorphisms were genotyped in two steps using a total of six T1D family data sets, as well as case-control materials for both T1D and celiac disease (CD).
View Article and Find Full Text PDFThe FOXP3 gene encodes a transcription factor thought to be essential for the development and function of T regulatory cells. Two previous studies have tested common polymorphisms in FOXP3 for association with type 1 diabetes (T1D) with conflicting results. The aim of our study was to see whether there is any evidence of association between the FOXP3 polymorphisms previously reported to be associated with T1D, in a Caucasian population regarding T1D and coeliac disease (CD).
View Article and Find Full Text PDFThe cytotoxic T lymphocyte antigen4 (CTLA4) gene plays a critical role in the control of T cell activation. The gene encodes a surface molecule with inhibitory effects on activated T cells. Several studies have disclosed an association between the previously known variants of the CTLA4 gene and autoimmune disorders, but no study has as yet found any definite association between vitiligo and the CTLA4 polymorphisms.
View Article and Find Full Text PDFThe cytotoxic T lymphocyte antigen-4 (CTLA4) gene on chromosome 2q33 encodes a key regulator in the adaptive immune system. The CTLA4 surface molecule is expressed on activated T lymphocytes and involved in down-regulation of the immune response. Previous studies on a possible association between autoimmune Addison's disease and CTLA4 polymorphisms have shown conflicting results.
View Article and Find Full Text PDF