The nucleolus has core functions in ribosome biosynthesis, but also acts as a regulatory hub in a plethora of non-canonical processes, including cellular stress. Upon DNA damage, several DNA repair factors shuttle between the nucleolus and the nucleoplasm. Yet, the molecular mechanisms underlying such spatio-temporal protein dynamics remain to be deciphered.
View Article and Find Full Text PDFThe host-cell restriction factor SERINC5 potently suppresses the infectivity of HIV, type 1 (HIV-1) particles, and is counteracted by the viral pathogenesis factor Nef. However, the molecular mechanism by which SERINC5 restricts HIV-1 particle infectivity is still unclear. Because SERINC proteins have been suggested to facilitate the incorporation of serine during the biosynthesis of membrane lipids and because lipid composition of HIV particles is a major determinant of the infectious potential of the particles, we tested whether SERINC5-mediated restriction of HIV particle infectivity involves alterations of membrane lipid composition.
View Article and Find Full Text PDFCell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach.
View Article and Find Full Text PDF