Variation in the microbial cycling of nutrients and carbon in the ocean is an emergent property of complex planktonic communities. While recent findings have considerably expanded our understanding of the diversity and distribution of nitrogen (N) fixing marine diazotrophs, knowledge gaps remain regarding ecological interactions between diazotrophs and other community members. Using quantitative 16S and 18S V4 rDNA amplicon sequencing, we surveyed eukaryotic and prokaryotic microbial communities from samples collected in August 2016 and 2017 across the Western North Atlantic.
View Article and Find Full Text PDFNitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean.
View Article and Find Full Text PDFPrimary production by phytoplankton represents a major pathway whereby atmospheric CO is sequestered in the ocean, but this requires iron, which is in scarce supply. As over 99% of iron is complexed to organic ligands, which increase iron solubility and microbial availability, understanding the processes governing ligand dynamics is of fundamental importance. Ligands within humic-like substances have long been considered important for iron complexation, but their role has never been explained in an oceanographically consistent manner.
View Article and Find Full Text PDFThe dinoflagellate Alexandrium minutum produces toxic compounds, including paralytic shellfish toxins, but also some unknown extracellular toxins. Although copper (Cu) is an essential element, it can impair microalgal physiology and increase their toxic potency. This study investigated the effect of different concentrations of dissolved Cu (7 nM, 79 nM and 164 nM) on A.
View Article and Find Full Text PDF