Publications by authors named "Hannah Vanrusselt"

Chronic hepatitis B (CHB) represents a significant unmet medical need with few options beyond lifelong treatment with nucleoside analogues, which rarely leads to a functional cure. Novel agents that reduce levels of HBV DNA, RNA and other viral antigens could lead to better treatment outcomes. The capsid assembly modulator (CAM) class of compounds represents an important modality for chronic suppression and to improve functional cure rates, either alone or in combination.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic HBV infection leads to severe liver disease and liver cancer, and new antiviral treatments like Capsid Assembly Modulators (CAMs) are needed but not fully understood in their mechanism of action.
  • Recent research demonstrates that CAM-A compounds reduce HBsAg levels and cause cell death in HBV-infected cells by promoting the aggregation of HBV core proteins (HBc) in the nucleus, triggering apoptosis.
  • Discovering that CAM-A facilitates HBc aggregation and activates apoptosis provides insights for developing new therapies aimed at effectively managing chronic HBV infections.
View Article and Find Full Text PDF

Nucleic acid polymers (NAPs) are an attractive treatment modality for chronic hepatitis B (CHB), with REP2139 and REP2165 having shown efficacy in CHB patients. A subset of patients achieve functional cure, whereas the others exhibit a moderate response or are non-responders. NAP efficacy has been difficult to recapitulate in animal models, with the duck hepatitis B virus (DHBV) model showing some promise but remaining underexplored for NAP efficacy testing.

View Article and Find Full Text PDF

Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself.

View Article and Find Full Text PDF

Background And Aims: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined ATN pathologies, besides their role in A and T models only.

View Article and Find Full Text PDF

Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3-ASC inflammasome (Halle et al.

View Article and Find Full Text PDF