Publications by authors named "Hannah Tsunemoto"

causes severe infections in humans, resists multiple antibiotics, and survives in stressful environmental conditions due to modulations of its complex transcriptional regulatory network (TRN). Unfortunately, our global understanding of the TRN in this emerging opportunistic pathogen is limited. Here, we apply independent component analysis, an unsupervised machine learning method, to a compendium of 139 RNA-seq data sets of three multidrug-resistant international clonal complex I strains (AB5075, AYE, and AB0057).

View Article and Find Full Text PDF

The emergence of antibiotic resistance in bacteria has led to the investigation of alternative treatments, such as phage therapy. In this study, we examined the interactions between the nucleus-forming jumbo phage ФKZ and antibiotic treatment against Pseudomonas aeruginosa. Using the fluorescence microscopy technique of bacterial cytological profiling, we identified mechanism-of-action-specific interactions between antibiotics that target different biosynthetic pathways and ФKZ infection.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus epidermidis (MRSE) endocarditis failing conventional therapy has been successfully treated with nafcillin plus daptomycin in the clinic. In vitro studies showed that nafcillin enhanced daptomycin killing of MRSE in both planktonic cells and biofilm. Nafcillin exposure also sensitized MRSE to killing by human neutrophils and cathelicidin antimicrobial peptide LL-37.

View Article and Find Full Text PDF

Xeruborbactam (formerly QPX7728) is a cyclic boronate inhibitor of numerous serine and metallo-beta-lactamases. At concentrations generally higher than those required for beta-lactamase inhibition, xeruborbactam has direct antibacterial activity against some Gram-negative bacteria, with MIC/MIC values of 16/32 μg/mL and 16/64 μg/mL against carbapenem-resistant and carbapenem-resistant Acinetobacter baumannii, respectively (the MIC/MIC values against Pseudomonas aeruginosa are >64 μg/mL). In Klebsiella pneumoniae, inactivation of OmpK36 alone or in combination with OmpK35 resulted in 2- to 4-fold increases in the xeruborbactam MIC.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen and major cause of hospital-acquired infections. The virulence of P. aeruginosa is largely determined by its transcriptional regulatory network (TRN).

View Article and Find Full Text PDF

The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis.

View Article and Find Full Text PDF

In this study, we sought to determine whether an assay for studying antibiotic mechanisms of action could provide insight into the activity of compounds that may inhibit multiple targets. Thus, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules against Escherichia coli and classified them according to their mechanisms of action.

View Article and Find Full Text PDF

Background: The evolving antibiotic-resistant behavior of health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) USA100 strains are of major concern. They are resistant to a broad class of antibiotics such as macrolides, aminoglycosides, fluoroquinolones, and many more.

Findings: The selection of appropriate antibiotic susceptibility examination media is very important.

View Article and Find Full Text PDF

The ability of to infect many different tissue sites is enabled, in part, by its transcriptional regulatory network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying independent component analysis to a compendium of 108 RNA-sequencing expression profiles from two clinical strains (TCH1516 and LAC). ICA decomposed the transcriptome into 29 independently modulated sets of genes (i-modulons) that revealed: 1) High confidence associations between 21 i-modulons and known regulators; 2) an association between an i-modulon and σS, whose regulatory role was previously undefined; 3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR, and Vim-3; 4) the roles of three key transcription factors (CodY, Fur, and CcpA) in coordinating the metabolic and regulatory networks; and 5) a low-dimensional representation, involving the function of few transcription factors of changes in gene expression between two laboratory media (RPMI, cation adjust Mueller Hinton broth) and two physiological media (blood and serum).

View Article and Find Full Text PDF

Antimicrobial susceptibility testing standards driving clinical decision-making have centered around the use of cation-adjusted Mueller-Hinton broth (CA-MHB) as the medium with the notion of supporting bacterial growth, without consideration of recapitulating the environment. However, it is increasingly recognized that various medium conditions have tremendous influence on antimicrobial activity, which in turn may have major implications on the ability of susceptibility assays to predict antibiotic activity To elucidate differential growth optimization and antibiotic resistance mechanisms, adaptive laboratory evolution was performed in the presence or absence of the antibiotic nafcillin with methicillin-resistant (MRSA) TCH1516 in either (i) CA-MHB, a traditional bacteriological nutritionally rich medium, or (ii) Roswell Park Memorial Institute (RPMI), a medium more reflective of the host environment. Medium adaptation analysis showed an increase in growth rate in RPMI, but not CA-MHB, with mutations in , adenine phosphoribosyltransferase, and the manganese transporter subunit, , occurring reproducibly in parallel replicate evolutions.

View Article and Find Full Text PDF

Azithromycin (AZM), the most commonly prescribed antibiotic in the United States, is thought to have no activity against multidrug-resistant Gram-negative pathogens such as (AX) per standard minimum inhibitory concentration testing in cation-adjusted Mueller Hinton Broth. Here we provide the first report of AZM bactericidal activity against carbapenem-resistant isolates of AX, with a multifold decrease in minimum inhibitory concentration across 12 clinical isolates when examined under physiologic testing conditions that better recapitulate the in vivo human environment. This pharmaceutical activity, evident in eukaryotic tissue culture media, is associated with enhanced AZM intracellular penetration and synergistic killing with human whole blood, serum, and neutrophils.

View Article and Find Full Text PDF

Staphylococcus aureus strains have been continuously evolving resistance to numerous classes of antibiotics including methicillin, vancomycin, daptomycin and linezolid, compounding the enormous healthcare and economic burden of the pathogen. Cation-adjusted Mueller-Hinton broth (CA-MHB) is the standard bacteriological media for measuring antibiotic susceptibility in the clinical lab, but the use of media that more closely mimic the physiological state of the patient, e.g.

View Article and Find Full Text PDF

Background: Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A.

View Article and Find Full Text PDF

Cation adjusted-Mueller Hinton Broth (CA-MHB) is the standard bacteriological medium utilized in the clinic for the determination of antibiotic susceptibility. However, a growing number of literature has demonstrated that media conditions can cause a substantial difference in the efficacy of antibiotics and antimicrobials. Recent studies have also shown that minimum inhibitory concentration (MIC) tests performed in standard cell culture media (e.

View Article and Find Full Text PDF

Infections caused by New Delhi metallo-β-lactamase (NDM)-producing strains of multidrug-resistant Klebsiella pneumoniae are a global public health threat lacking reliable therapies. NDM is impervious to all existing β-lactamase inhibitor (BLI) drugs, including the non-β-lactam BLI avibactam (AVI). Though lacking direct activity against NDMs, AVI can interact with penicillin-binding protein 2 in a manner that may influence cell wall dynamics.

View Article and Find Full Text PDF

Antigenic exposures at epithelial sites in infancy and early childhood are thought to influence the maturation of humoral immunity and modulate the risk of developing immunoglobulin E (IgE)-mediated allergic disease. How different kinds of environmental exposures influence B cell isotype switching to IgE, IgG, or IgA, and the somatic mutation maturation of these antibody pools, is not fully understood. We sequenced antibody repertoires in longitudinal blood samples in a birth cohort from infancy through the first 3 years of life and found that, whereas IgG and IgA show linear increases in mutational maturation with age, IgM and IgD mutations are more closely tied to pathogen exposure.

View Article and Find Full Text PDF

An increasing number of multidrug-resistant (MDR-) infections have been reported worldwide, posing a threat to public health. The establishment of methods to elucidate the mechanism of action (MOA) of -specific antibiotics is needed to develop novel antimicrobial therapeutics with activity against MDR- We previously developed bacterial cytological profiling (BCP) to understand the MOA of compounds in and Given how distantly related is to these species, it was unclear to what extent it could be applied. Here, we implemented BCP as an antibiotic MOA discovery platform for We found that the BCP platform can distinguish among six major antibiotic classes and can also subclassify antibiotics that inhibit the same cellular pathway but have different molecular targets.

View Article and Find Full Text PDF

S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S.

View Article and Find Full Text PDF

Unlabelled: Pseudomonas aeruginosa is an important opportunistic pathogen that has become a serious problem due to increased rates of antibiotic resistance. Due to this along with a dearth in novel antibiotic development, especially against Gram-negative pathogens, new therapeutic strategies are needed to prevent a post-antibiotic era. Here, we describe the importance of the vacJ/Mla pathway in resisting bactericidal actions of the host innate immune response.

View Article and Find Full Text PDF