Publications by authors named "Hannah Stes"

This study investigated the application of a dynamic control strategy in an aerobic granular sludge (AGS) reactor treating real variable brewery/bottling wastewater. For 482 days, the anaerobic and aerobic reaction steps in a lab-scale AGS system were controlled dynamically. A pH-based control was used for the anaerobic step, and an oxygen uptake rate (OUR) based control for the aerobic step.

View Article and Find Full Text PDF

In this study, the influence of the anaerobic mixed feeding rate on granule stability and reactor performance in a conventional sequencing batch reactor (C-SBR) was investigated while treating various industrial wastewaters. A laboratory-scale SBR fed with malting wastewater rich in phosphorus was operated for approximately 250 days, which was divided into two periods: (I) mixed pulse feed and (II) prolonged mixed feed. Initially, no bio-P activity was observed.

View Article and Find Full Text PDF

Treatment of rapidly varying wastewaters in anaerobic/aerobic aerobic granular sludge (AGS) systems remains problematic. This study investigated AGS formation and the impact of varying COD and phosphorus concentrations on an enhanced biological phosphorus removal (EBPR) AGS SBR with a conductivity based anaerobic and OUR based aerobic dynamically controlled step. Phase 1 investigated the development of AGS.

View Article and Find Full Text PDF

A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.

View Article and Find Full Text PDF