Publications by authors named "Hannah Staisloff"

Cochlear implant (CI) users often produce different vocal pitches when using their left versus right CI. One possible explanation for this is that insertion depth differs across the two CIs. The goal of this study was to investigate the role of electrode insertion depth in the production of vocal pitch.

View Article and Find Full Text PDF

Objectives: Currently, bilateral cochlear implants (CIs) are independently programmed in clinics using frequency allocations based on the relative location of a given electrode from the end of each electrode array. By pairing electrodes based on this method, bilateral CI recipients may have decreased sensitivity to interaural time differences (ITD) and/or interaural level differences (ILD), two cues critical for binaural tasks. There are multiple different binaural measures that can potentially be used to determine the optimal way to pair electrodes across the ears.

View Article and Find Full Text PDF

There is often a mismatch for bilateral cochlear implant (CI) users between the electrodes in the two ears that receive the same frequency allocation and the electrodes that, when stimulated, yield the same pitch. Studies with CI users who have extreme mismatches between the two ears show that adaptation occurs in terms of pitch matching, reducing the difference between which electrodes receive the same frequency allocation and which ones produce the same pitch. The considerable adaptation that occurs for these extreme cases suggests that adaptation should be sufficient to overcome the relatively minor mismatches seen with typical bilateral CI users.

View Article and Find Full Text PDF

Bilateral cochlear implant users often have difficulty fusing sounds from the two ears into a single percept. However, measuring fusion can be difficult, particularly with cochlear implant users who may have no reference for a fully fused percept. As a first step to address this, this study examined how localization performance of normal hearing subjects relates to binaural fusion.

View Article and Find Full Text PDF

For bilateral cochlear implant users, the left and right arrays are typically not physically aligned, resulting in a degradation of binaural fusion, which can be detrimental to binaural abilities. Perceptually aligning the two arrays can be accomplished by disabling electrodes in one ear that do not have a perceptually corresponding electrode in the other side. However, disabling electrodes at the edges of the array will cause compression of the input frequency range into a smaller cochlear extent, which may result in reduced spectral resolution.

View Article and Find Full Text PDF