Accurate comparison of flow cytometric data requires an understanding of how the cytometric fingerprint of a sample may vary from instrument to instrument. Key sources of variability include the number, wavelengths, and power of excitation lasers; the number and types of emission detectors; sample-handling systems and options; and whether fixed or dynamic detector voltages are used. To explore this variability, suspensions of three sizes (0.
View Article and Find Full Text PDFEnsuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges.
View Article and Find Full Text PDFConnected and automated vehicles (CAVs) are poised to reshape transportation and mobility by replacing humans as the driver and service provider. While the primary stated motivation for vehicle automation is to improve safety and convenience of road mobility, this transformation also provides a valuable opportunity to improve vehicle energy efficiency and reduce emissions in the transportation sector. Progress in vehicle efficiency and functionality, however, does not necessarily translate to net positive environmental outcomes.
View Article and Find Full Text PDF