Publications by authors named "Hannah Melina Mayer"

Recently, there has been a co-evolution of mammalian libraries and diverse microfluidic approaches for therapeutic antibody hit discovery. Mammalian libraries enable the preservation of full immune repertoires, produce hit candidates in final format and facilitate broad combinatorial bispecific antibody screening, while several available microfluidic methodologies offer opportunities for rapid high-content screens. Here, we report proof-of-concept studies exploring the potential of combining microfluidic technologies with mammalian libraries for antibody discovery.

View Article and Find Full Text PDF

Microfluidics has been recently applied to better understand the spatial and temporal progression of the immune response in several species, for tool and biotherapeutic production cell line development and rapid antibody hit discovery. Several technologies have emerged that allow interrogation of large diversities of antibody-secreting cells in defined compartments such as picoliter droplets or nanopens. Mostly primary cells of immunized rodents but also recombinant mammalian libraries are screened for specific binding or directly for the desired function.

View Article and Find Full Text PDF

Recent years have seen the development of a variety of mammalian library approaches for display and secretion mode. Advantages include library approaches for engineering, preservation of precious immune repertoires and their repeated interrogation, as well as screening in final therapeutic format and host. Mammalian display approaches for antibody optimization exploit these advantages, necessitating the generation of large libraries but in turn enabling early screening for both manufacturability and target specificity.

View Article and Find Full Text PDF