Publications by authors named "Hannah Mccalmont"

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that expresses high levels of the enzyme aldo-keto reductase family 1 member C3 (AKR1C3). To exploit this finding, we developed a novel prodrug, ACHM-025, which is selectively activated by AKR1C3 to a nitrogen mustard DNA alkylating agent. We show that ACHM-025 has potent in vivo efficacy against T-ALL patient-derived xenografts (PDXs) and eradicated the disease in 7 PDXs.

View Article and Find Full Text PDF

Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is an aggressive B-ALL malignancy associated with high rates of relapse and inferior survival rate. While targeted treatments against the cell surface proteins CD22 or CD19 have been transformative in the treatment of refractory B-ALL, patients may relapse due to antigen loss, necessitating targeting alternative antigens. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in half of Ph-like ALL cases conferring chemoresistance and enhancement of leukemia cell survival.

View Article and Find Full Text PDF

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells.

View Article and Find Full Text PDF

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy.

View Article and Find Full Text PDF

The Coronavirus 2019 (COVID-19) pandemic disproportionately affected people living and working in care homes. This study aimed to explore the experience of care home managers on the implementation and uptake of the COVID-19 vaccination programme by residents and staff in care homes in Northern Ireland. An exploratory mixed methods approach was used, i.

View Article and Find Full Text PDF

Antibody fragments are promising building blocks for developing targeted therapeutics, thus improving treatment efficacy while minimising off-target toxicity. Despite recent advances in targeted therapeutics, patients with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), a high-risk malignancy, lack specific and effective targeted treatments. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in 50% of Ph-like ALL cases, conferring the survival of leukemia blasts through activation of the JAK/STAT signalling pathway.

View Article and Find Full Text PDF

Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency.

View Article and Find Full Text PDF

Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms.

View Article and Find Full Text PDF

Cyclin-dependent kinase 9 and bromodomain and extraterminal inhibitors are synergistic in MLL-rearranged leukemia. Multiple AML driver genes are downregulated by the combined therapy suggesting broad applicability for this subtype.

View Article and Find Full Text PDF

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease.

View Article and Find Full Text PDF

Background: Denintuzumab mafodotin (SGN-CD19A) is a CD19-targeting antibody-drug conjugate, comprising a monoclonal antibody conjugated to the potent cytotoxin monomethyl auristatin F. Since denintuzumab mafodotin has previously shown activity against B-cell malignancies in early-stage clinical trials, it was of interest to test it against the Pediatric Preclinical Testing Program preclinical models of CD19 pediatric acute lymphoblastic leukemia (ALL).

Procedures: Denintuzumab mafodotin was evaluated against eight B-cell lineage ALL patient-derived xenografts (PDXs), representing B-cell precursor ALL, Ph-like ALL, and mixed-lineage leukemia rearranged infant ALL.

View Article and Find Full Text PDF

Glucocorticoids play a critical role in the treatment of lymphoid malignancies. While glucocorticoid efficacy can be largely attributed to lymphocyte-specific apoptosis, its molecular basis remains elusive. Here, we studied genome-wide lymphocyte-specific open chromatin domains (LSOs), and integrated LSOs with glucocorticoid-induced RNA transcription and chromatin modulation using an in vivo patient-derived xenograft model of acute lymphoblastic leukemia (ALL).

View Article and Find Full Text PDF