Publications by authors named "Hannah M Stephens"

αβ T cell receptors (TCRs) principally recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP/D and PA/D, respectively) following in vivo influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few.

View Article and Find Full Text PDF

Unlabelled: αβ T-cell receptors (TCRs) recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP /D and PA /D , respectively) following influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few.

View Article and Find Full Text PDF

Lon is a widely distributed AAA+ (ATPases associated with diverse cellular activities) protease known for degrading poorly folded and damaged proteins and is often classified as a weak protein unfoldase. Here, using a Lon-degron pair from Mesoplasma florum (MfLon and MfssrA, respectively), we perform ensemble and single-molecule experiments to elucidate the molecular mechanisms underpinning MfLon function. Notably, we find that MfLon unfolds and degrades stably folded substrates and that translocation of these unfolded polypeptides occurs with a ∼6-amino-acid step size.

View Article and Find Full Text PDF

αβ T cells are mechanosensors that leverage bioforces during immune surveillance for highly sensitive and specific antigen discrimination. Single-molecule studies are used to profile the initial TCRαβ-pMHC binding event, and various biophysical parameters can be identified. Isolating purified TCRαβ and pMHC molecules on a coverslip allows for direct measurements of the kinetics and conformational changes in the system and removes cellular components along the load pathway that may interfere with or mask subtle changes.

View Article and Find Full Text PDF

T-cell antigen receptors (TCRs) are mechanosensors, which initiate a signaling cascade upon ligand recognition resulting in T-cell differentiation, homeostasis, effector and regulatory functions. An optical trap combined with fluorescence permits direct monitoring of T-cell triggering in response to force application at various concentrations of peptide-bound major histocompatibility complex molecules (pMHC). The technique mimics physiological shear forces applied as cells crawl across antigen-presenting surfaces during immune surveillance.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapies exploit facile antibody-mediated targeting to elicit useful immune responses in patients. This work directly compares binding profiles of CAR and αβ T-cell receptors (TCR) with single cell and single molecule optical trap measurements against a shared ligand. DNA-tethered measurements of peptide-major histocompatibility complex (pMHC) ligand interaction in both CAR and TCR exhibit catch bonds with specific peptide agonist peaking at 25 and 14 pN, respectively.

View Article and Find Full Text PDF

High-acuity αβT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αβTCR-pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αβTCRs and pre-TCRs within the αβT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.

View Article and Find Full Text PDF