Publications by authors named "Hannah M Rice"

Human proficiency for bipedal locomotion relies on the structure and function of our feet, including the interplay between active muscles and passive structures acting on the toes during the propulsive phase of gait. However, our understanding of the relative contributions of these different structures remains incomplete. We aimed to determine the distinct toe-flexion torque-angle relationships of the plantar intrinsic muscles (PIMs), extrinsic muscles and passive structures, therefore offering insight into their force-generating capabilities and importance for walking and running.

View Article and Find Full Text PDF

Advances in assistive exoskeleton technology, and a boom in related scientific literature, prompted a need to review the potential use of exoskeletons in defence and security. A systematic review examined the evidence for successful augmentation of human performance in activities deemed most relevant to military tasks. Categories of activities were determined through literature scoping and Human Factors workshops with military stakeholders.

View Article and Find Full Text PDF

Purpose Of Review: Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures.

Recent Findings: Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise.

View Article and Find Full Text PDF

The requirements of running a 2-h marathon have been extensively debated but the actual physiological demands of running at ∼21.1 km/h have never been reported. We therefore conducted laboratory-based physiological evaluations and measured running economy (O cost) while running outdoors at ∼21.

View Article and Find Full Text PDF

Tibial stress fractures are a problematic injury among runners. Increased loading of the tibia has been observed following prolonged weight-bearing activity and is suggested to be the result of reduced activity of the plantar flexor muscles. The musculature that spans the tibia contributes to bending of the bone and influences the magnitude of stress on the tibia during running.

View Article and Find Full Text PDF

Introduction: Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted.

View Article and Find Full Text PDF

It is believed that human ancestors evolved the ability to run bipedally approximately 2 million years ago. This form of locomotion may have been important to our survival and likely has influenced the evolution of our body form. As our bodies have adapted to run, it seems unusual that up to 79% of modern day runners are injured annually.

View Article and Find Full Text PDF

Introduction: Running with a forefoot strike (FFS) pattern has been suggested to reduce the risk of overuse running injuries, due to a reduced vertical load rate compared with rearfoot strike (RFS) running. However, resultant load rate has been reported to be similar between foot strikes when running in traditional shoes, leading to questions regarding the value of running with a FFS. The influence of minimal footwear on the resultant load rate has not been considered.

View Article and Find Full Text PDF