Publications by authors named "Hannah M Eggink"

Introduction: Lifestyle determinants of 2-hour glucose concentration in people with type 2 diabetes and interindividual differences need to be identified.

Research Design And Methods: 38 participants with type 2 diabetes, treated with lifestyle advice and/or metformin, tracked their physical activity, sleep and dietary intake, while continuously monitoring interstitial glucose concentrations for 11 periods of four consecutive days each. A linear mixed-effects model was used to quantify the effect of sleep, stress, current glucose, carbohydrate intake and exercise on glucose levels 2 hours later.

View Article and Find Full Text PDF

Background: Study participants and patients often perceive (long) questionnaires as burdensome. In addition, paper-based questionnaires are prone to errors such as (unintentionally) skipping questions or filling in a wrong type of answer. Such errors can be prevented with the emergence of mobile questionnaire apps.

View Article and Find Full Text PDF

Background: Bile acids are multifaceted metabolic compounds that signal to cholesterol, glucose, and lipid homeostasis via receptors like the Farnesoid X Receptor (FXR) and transmembrane Takeda G protein-coupled receptor 5 (TGR5). The postprandial increase in plasma bile acid concentrations is therefore a potential metabolic signal. However, this postprandial response has a high interindividual variability.

View Article and Find Full Text PDF

Bile acids fulfill a variety of metabolic functions including regulation of glucose and lipid metabolism. Since changes of bile acid metabolism accompany obesity, Type 2 Diabetes Mellitus and bariatric surgery, there is great interest in their role in metabolic health. Here, we developed a mathematical model of systemic bile acid metabolism, and subsequently performed analyses to gain quantitative insight into the factors determining plasma bile acid measurements.

View Article and Find Full Text PDF

Bile acids can function in the postprandial state as circulating signaling molecules in the regulation of glucose and lipid metabolism via the transmembrane receptor TGR5 and nuclear receptor FXR. Both receptors are present in the central nervous system, but their function in the brain is unclear. Therefore, we investigated the effects of intracerebroventricular (i.

View Article and Find Full Text PDF

Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism.

View Article and Find Full Text PDF

Desynchronization between the master clock in the brain, which is entrained by (day) light, and peripheral organ clocks, which are mainly entrained by food intake, may have negative effects on energy metabolism. Bile acid metabolism follows a clear day/night rhythm. We investigated whether in rats on a normal chow diet the daily rhythm of plasma bile acids and hepatic expression of bile acid metabolic genes is controlled by the light/dark cycle or the feeding/fasting rhythm.

View Article and Find Full Text PDF

Background & Aims: Bile acids (BAs) play a key role in lipid uptake and metabolic signalling in different organs including gut, liver, muscle and brown adipose tissue. Portal and peripheral plasma BA concentrations increase after a meal. However, the exact kinetics of postprandial BA metabolism have never been described in great detail.

View Article and Find Full Text PDF

The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) have neuro-restorative properties in animal models for spinal cord injury, stroke, and amyotrophic lateral sclerosis. Here we used a multistep screening approach to discover genes specifically contributing to the regeneration-promoting properties of OECs. Microarray screening of the injured olfactory pathway and of cultured OECs identified 102 genes that were subsequently functionally characterized in cocultures of OECs and primary dorsal root ganglion (DRG) neurons.

View Article and Find Full Text PDF