Publications by authors named "Hannah L Law"

Numerous protocols exist for investigating leukocyte recruitment and clearance both in vitro and in vivo. Here we describe an in vitro flow chamber assay typically used for studying the mechanisms underpinning leukocyte movement through the endothelium and zymosan-induced peritonitis, an acute in vivo model of inflammation that enables both leukocyte trafficking and clearance to be monitored. Insight is given as to how these models can be used to study the actions of galectins on the inflammatory process.

View Article and Find Full Text PDF

Neutrophil trafficking is a key component of the inflammatory response. Here, we have investigated the role of the immunomodulatory lectin Galectin-9 (Gal-9) on neutrophil recruitment. Our data indicate that Gal-9 is upregulated in the inflamed vasculature of RA synovial biopsies and report the release of Gal-9 into the extracellular environment following endothelial cell activation.

View Article and Find Full Text PDF

Galectin-1 (Gal-1) exerts immune-regulatory and anti-inflammatory actions in animal models of acute and chronic inflammation. Its release into the extracellular milieu often correlates with the peak of inflammation suggesting that it may serve a pro-resolving function. Gal-1 is reported to inhibit neutrophil recruitment and induce surface exposure of phosphatidylserine (PS), an "eat me" signal on the surface of neutrophils, yet its role in resolution remains to be fully elucidated.

View Article and Find Full Text PDF

The targeted delivery of therapies to diseased tissues offers a safe opportunity to achieve optimal efficacy while limiting systemic exposure. These considerations apply to many disease indications but are especially relevant for rheumatoid arthritis (RA), as RA is a systemic autoimmune disease which affects multiple joints. We have identified an antibody that is specific to damaged arthritic cartilage (anti-ROS-CII) that can be used to deliver treatments specifically to arthritic joints, yielding augmented efficacy in experimental arthritis.

View Article and Find Full Text PDF