Publications by authors named "Hannah K Lembke"

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance.

View Article and Find Full Text PDF

The bacterial cell envelope provides a protective barrier that is challenging for small molecules and biomolecules to cross. Given the anionic nature of both Gram-positive and Gram-negative bacterial cell envelopes, negatively charged molecules are particularly difficult to deliver into these organisms. Many strategies have been employed to penetrate bacteria, ranging from reagents such as cell-penetrating peptides, enzymes, and metal-chelating compounds to physical perturbations.

View Article and Find Full Text PDF

Bacteria comprise complex communities within our bodies and largely have beneficial roles, however a small percentage are pathogenic. While all pathogens are important to public health, immediate action is necessary to combat bacterial strains developing pan- and multi-resistance to antibiotics. As present therapeutics fail to tackle this problem, novel strategies are required to address this threat.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance.

View Article and Find Full Text PDF

Histidine kinases (HKs) are sensor proteins found ubiquitously in prokaryotes. They are the first protein in two-component systems (TCSs), signaling pathways that respond to a myriad of environmental stimuli. TCSs are typically comprised of a HK and its cognate response regulator (RR) which often acts as a transcription factor.

View Article and Find Full Text PDF

Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies.

View Article and Find Full Text PDF