Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 () gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts.
View Article and Find Full Text PDFVesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown.
View Article and Find Full Text PDFEpigenetic regulatory mechanisms are increasingly recognized as crucial determinants of cellular specification and differentiation. During muscle cell differentiation (myogenesis), extensive remodelling of histone acetylation and methylation occurs. Several of these histone modifications aid in the expression of muscle-specific genes and the silencing of genes that block lineage commitment.
View Article and Find Full Text PDFAlternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown.
View Article and Find Full Text PDFBiomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA).
View Article and Find Full Text PDFAlternative splicing is a regulatory mechanism by which multiple mRNA isoforms are generated from single genes. Numerous genes that encode membrane trafficking proteins are alternatively spliced. However, there is limited information about the functional consequences that result from these splicing transitions.
View Article and Find Full Text PDFNatural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity.
View Article and Find Full Text PDF