Empirical evidence of the cost of producing toxic compounds in harmful microalgae is completely lacking. Yet costs are often assumed to be high, implying substantial ecological benefits with adaptive significance exist. To study potential fitness costs of toxin production, 16 strains including three species of the former species complex were grown under both carbon limitation and unlimited conditions.
View Article and Find Full Text PDFRecently, a hitherto unknown feeding strategy, the toxic mucus trap, was discovered in the dinoflagellate Alexandrium pseudogonyaulax. In this study, over 40 strains of 8 different Alexandrium species (A. ostenfeldii, A.
View Article and Find Full Text PDFBlooms of the microalga Prymnesium parvum cause devastating fish kills worldwide, which are suspected to be caused by the supersized ladder-frame polyether toxins prymnesin-1 and -2. These toxins have, however, only been detected from P. parvum in rare cases since they were originally described two decades ago.
View Article and Find Full Text PDFBioassay-guided discovery of ichthyotoxic algal compounds using in vivo fish assays is labor intensive, costly, and highly regulated. Since the mode of action of most known algal-mediated fish-killing toxins is damage to the cell membranes in the gills, various types of cell-based bioassays are often used for bioassay guided purification of new ichthyotoxins. Here we tested the hypothesis that allelopathy is related to ichthyotoxicity and thus that a microalgal bioassay can be used as a proxy for ichthyotoxicity by comparing the toxicity of five strains of Prymnesium parvum toward rainbow trout (Oncorhynchus mykiss, 10 g) and the microalga Teleaulax acuta.
View Article and Find Full Text PDF