Publications by authors named "Hannah E A Macgregor"

Many fresh and coastal waters are becoming increasingly turbid because of human activities, which may disrupt the visually mediated behaviours of aquatic organisms. Shoaling fish typically depend on vision to maintain collective behaviour, which has a range of benefits including protection from predators, enhanced foraging efficiency and access to mates. Previous studies of the effects of turbidity on shoaling behaviour have focussed on changes to nearest neighbour distance and average group-level behaviours.

View Article and Find Full Text PDF
Article Synopsis
  • - AVONET is a comprehensive dataset providing functional traits for all bird species, featuring data on ecological variables, morphological traits, and species' range sizes from over 90,000 individuals across 181 countries.
  • - The dataset includes both raw measurements and summarized species averages in multiple taxonomic formats, enabling integration with phylogenies, geographical maps, and conservation status information.
  • - AVONET aims to enhance research in evolutionary biology and ecology by offering detailed insights into biodiversity, facilitating the testing of theories and models related to global change.
View Article and Find Full Text PDF

Despite extensive interest in the dynamic interactions between individuals that drive collective motion in animal groups, the dynamics of collective motion over longer time frames are understudied. Using three-spined sticklebacks, randomly assigned to 12 shoals of eight fish, we tested how six key traits of collective motion changed over shorter (within trials) and longer (between days) timescales under controlled laboratory conditions. Over both timescales, groups became less social with reduced cohesion, polarization, group speed and information transfer.

View Article and Find Full Text PDF

Animal groups vary in their collective order (or state), forming disordered swarms to highly polarized groups. One explanation for this variation is that individuals face differential benefits or costs depending on the group's order, but empirical evidence for this is lacking. Here we show that in three-spined sticklebacks (Gasterosteus aculeatus), fish that are first to respond to an ephemeral food source do so faster when shoals are in a disordered, swarm-like state.

View Article and Find Full Text PDF

An organism's ability to disperse influences many fundamental processes, from speciation and geographical range expansion to community assembly. However, the patterns and underlying drivers of variation in dispersal across species remain unclear, partly because standardised estimates of dispersal ability are rarely available. Here we present a global dataset of avian hand-wing index (HWI), an estimate of wing shape widely adopted as a proxy for dispersal ability in birds.

View Article and Find Full Text PDF

Sexual selection is proposed to be an important driver of speciation and phenotypic diversification in animal systems. However, previous phylogenetic tests have produced conflicting results, perhaps because they have focused on a single signalling modality (visual ornaments), whereas sexual selection may act on alternative signalling modalities (e.g.

View Article and Find Full Text PDF

Animal eyes are some of the most widely recognisable structures in nature. Due to their salience to predators and prey, most research has focused on how animals hide or camouflage their eyes [1]. However, across all vertebrate Classes, many species actually express brightly coloured or conspicuous eyes, suggesting they may have also evolved a signalling function.

View Article and Find Full Text PDF

Divergence in communication systems should influence the likelihood that individuals from different lineages interbreed, and consequently shape the direction and rate of hybridization. Here, we studied the role of chemical communication in hybridization, and its contribution to asymmetric and sexually selected introgression between two lineages of the common wall lizard (Podarcis muralis). Males of the two lineages differed in the chemical composition of their femoral secretions.

View Article and Find Full Text PDF

Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space.

View Article and Find Full Text PDF

Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape.

View Article and Find Full Text PDF

Hybridisation is increasingly recognised as an important cause of diversification and adaptation. Here, we show how divergence in male secondary sexual characters between two lineages of the common wall lizard (Podarcis muralis) gives rise to strong asymmetries in male competitive ability and mating success, resulting in asymmetric hybridisation upon secondary contact. Combined with no negative effects of hybridisation on survival or reproductive characters in F1-hybrids, these results suggest that introgression should be asymmetric, resulting in the displacement of sexual characters of the sub-dominant lineage.

View Article and Find Full Text PDF

Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition.

View Article and Find Full Text PDF