Mutational activation of the PI3K/AKT pathway is among the most common pro-oncogenic events in human cancers. The clinical utility of PI3K and AKT inhibitors has, however, been modest to date. Here, we used CRISPR-mediated gene editing to study the biological consequences of AKT1 E17K mutation by developing an AKT1 E17K-mutant isogenic system in a -null background.
View Article and Find Full Text PDFDespite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on and mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy.
View Article and Find Full Text PDFDNA-dependent protein kinase (DNA-PK) has been shown to play a crucial role in repair of DNA double-strand breaks, facilitating nonhomologous end-joining. DNA-PK inhibitors have the potential to block DNA repair and therefore enhance DNA-damaging agents. M3814 is a DNA-PK inhibitor that has shown preclinical activity in combination with DNA-damaging agents, including radiotherapy and topoisomerase II inhibitors.
View Article and Find Full Text PDFOnly a subset of cancer patients currently benefit from personalized treatment approaches. Detection of actionable drug targets in cell-free DNA, more comprehensive molecular profiling integrating transcriptional analyses, and personalized combination regimens all hold promise in expanding the benefits of personalized oncology to larger numbers of cancer patients.
View Article and Find Full Text PDF