Publications by authors named "Hannah C Pigg"

The mechanisms of action for the platinum compounds cisplatin and oxaliplatin have yet to be fully elucidated, despite the worldwide use of these drugs. Recent studies suggest that the two compounds may be working through different mechanisms, with cisplatin inducing cell death via the DNA damage response (DDR) and oxaliplatin utilizing a nucleolar stress-based cell death pathway. While cisplatin-induced DDR has been subject to much research, the mechanisms for oxaliplatin's influence on the nucleolus are not well understood.

View Article and Find Full Text PDF

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics.

View Article and Find Full Text PDF

Pt(ii) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(ii) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway.

View Article and Find Full Text PDF

The properties of small molecule Pt(II) compounds that drive specific cellular responses are of interest due to their broad clinical use as chemotherapeutics as well as to provide a better mechanistic understanding of bioinorganic processes. The chemotherapeutic compound cisplatin causes cell death through DNA damage, while oxaliplatin may induce cell death through inhibition of ribosome biogenesis, also referred to as nucleolar stress induction. Previous work has found a subset of oxaliplatin derivatives that cause nucleolar stress at 24 h drug treatment.

View Article and Find Full Text PDF

Persulfides (RSSH) are important reactive sulfur species (RSS) that are intertwined with the biological functions of hydrogen sulfide (HS). The direct study of persulfides is difficult, however, due to their both nucleophilic and electrophilic character, which leads to the generation of an equilibrium of different RSS. To investigate the effects of persulfides directly, especially in biological systems, persulfide donors are needed to generate persulfides .

View Article and Find Full Text PDF