We describe a large consanguineous pedigree from a remote area of Northern Pakistan, with a complex developmental disorder associated with wide-ranging symptoms, including mental retardation, speech and language impairment and other neurological, psychiatric, skeletal and cardiac abnormalities. We initially carried out a genetic study using the HumanCytoSNP-12 v2.1 Illumina gene chip on nine family members and identified a single region of homozygosity shared amongst four affected individuals on chromosome 7p22 (positions 3059377-5478971).
View Article and Find Full Text PDFAutophagy (self-eating) is a highly conserved, vesicular pathway that cells use to eat pieces of themselves, including damaged organelles, protein aggregates or invading pathogens, for self-preservation and survival (Choi et al., N Engl J Med 368:651-662, 2013; Lamb et al., Nat Rev Mol Cell Biol 14:759-774, 2013).
View Article and Find Full Text PDFWIPI proteins, phosphatidylinositol 3-phosphate (PtdIns3P) binding proteins with β-propeller folds, are recruited to the omegasome following PtdIns3P production. The functions of the WIPI proteins in autophagosome formation are poorly understood. In a recent study, we reported that WIPI2B directly binds ATG16L1 and functions by recruiting the ATG12-ATG5-ATG16L1 complex to forming autophagosomes during starvation- or pathogen-induced autophagy.
View Article and Find Full Text PDFThe double-membraned autophagosome organelle is an integral part of autophagy, a process that recycles cellular components by non-selectively engulfing and delivering them to lysosomes where they are digested. Release of metabolites from this process is involved in cellular energy homoeostasis under basal conditions and during nutrient starvation. Selective engulfment of protein aggregates and dysfunctional organelles by autophagosomes also prevents disruption of cellular metabolism.
View Article and Find Full Text PDFMammalian cell homeostasis during starvation depends on initiation of autophagy by endoplasmic reticulum-localized phosphatidylinositol 3-phosphate (PtdIns(3)P) synthesis. Formation of double-membrane autophagosomes that engulf cytosolic components requires the LC3-conjugating Atg12-5-16L1 complex. The molecular mechanisms of Atg12-5-16L1 recruitment and significance of PtdIns(3)P synthesis at autophagosome formation sites are unknown.
View Article and Find Full Text PDFTwo key questions in the autophagy field are the mechanisms that underlie the signals for autophagy initiation and the source of membrane for expansion of the nascent membrane, the phagophore. In this review, we discuss recent findings highlighting the role of the classical endosomal pathway, from plasma membrane to lysosome, in the formation and expansion of the phagophore and subsequent degradation of the autophagosome contents. We also highlight the striking conservation of regulatory factors between the two pathways, including those regulating membrane budding and fusion, and the role of the lysosome in sensing the nutrient status of the cell, regulating mTORC1 activity, and ultimately the initiation of autophagy.
View Article and Find Full Text PDFThe exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1.
View Article and Find Full Text PDF