Melanocyte stem cells (McSCs) in zebrafish serve as an on-demand source of melanocytes during growth and regeneration, but metabolic programs associated with their activation and regenerative processes are not well known. Here, using live imaging coupled with scRNA-sequencing, we discovered that, during regeneration, quiescent McSCs activate a dormant embryonic neural crest transcriptional program followed by an aldehyde dehydrogenase (Aldh) 2 metabolic switch to generate progeny. Unexpectedly, although ALDH2 is well known for its aldehyde-clearing mechanisms, we find that, in regenerating McSCs, Aldh2 activity is required to generate formate - the one-carbon (1C) building block for nucleotide biosynthesis - through formaldehyde metabolism.
View Article and Find Full Text PDFMelanocytes, the pigment-producing cells, are replenished from multiple stem cell niches in adult tissue. Although pigmentation traits are known risk factors for melanoma, we know little about melanocyte stem cell (McSC) populations other than hair follicle McSCs and lack key lineage markers with which to identify McSCs and study their function. Here we find that Tfap2b and a select set of target genes specify an McSC population at the dorsal root ganglia in zebrafish.
View Article and Find Full Text PDFMelanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes.
View Article and Find Full Text PDFBackground Information: The fibroblast growth factor (FGF) signalling system of vertebrates is complex. In common with other vertebrates, secreted FGF ligands of the amphibian Xenopus signal through a family of four FGF receptor tyrosine kinases (fgfr1, 2, 3 and 4). A wealth of previous studies has demonstrated important roles for FGF signalling in regulating gene expression during cell lineage specification in amphibian development.
View Article and Find Full Text PDFZebrafish have become an increasingly important model organism in the field of wound healing and regenerative medicine, due to their high regenerative capacity coupled with high-resolution imaging in living animals. In a recent study, we described multiple physical and chemical methods to induce notochord injury that led to highly specific transcriptional responses in notochord cellular subpopulations. The notochord is a critical embryonic structure that functions to shape and pattern the vertebrae and spinal column.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease.
View Article and Find Full Text PDFThe same genes and signalling pathways control the formation of skin appendages in both fish and land animals.
View Article and Find Full Text PDFRegenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling.
View Article and Find Full Text PDF