Peat formation is the key process responsible for carbon sequestration in peatlands. In rich fens, peat is formed by brown mosses and belowground biomass of vascular plants. However, the impact of ecohydrological settings on the contribution of mosses and belowground biomass to peat formation remains an open question.
View Article and Find Full Text PDFUnlabelled: Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes.
View Article and Find Full Text PDFCultivated peatlands under drainage practices contribute significant carbon losses from agricultural sector in the Nordic countries. In this research, we developed the BASGRA-BGC model coupled with hydrological, soil carbon decomposition and methane modules to simulate the dynamic of water table level (WTL), carbon dioxide (CO) and methane (CH) emissions for cultivated peatlands. The field measurements from four experimental sites in Finland, Denmark and Norway were used to validate the predictive skills of this novel model under different WTL management practices, climatic conditions and soil properties.
View Article and Find Full Text PDFMany of the world's peatlands have been affected by water table drawdown and subsequent loss of organic matter. Rewetting has been proposed as a measure to restore peatland functioning and to halt carbon loss, but its effectiveness is subject to debate. An important prerequisite for peatland recovery is a return of typical microbial communities, which drive key processes.
View Article and Find Full Text PDFLand-sea riverine carbon transfer (LSRCT) is one of the key processes in the global carbon cycle. Although natural factors (e.g.
View Article and Find Full Text PDFBackground: Global warming is going to affect both agricultural production and carbon storage in soil worldwide. Given the complexity of the soil-plant-atmosphere continuum, in situ experiments of climate warming are necessary to predict responses of plants and emissions of greenhouse gases (GHG) from soils. Arrays of infrared (IR) heaters have been successfully applied in temperate and tropical agro-ecosystems to produce uniform and large increases in canopy surface temperature across research plots.
View Article and Find Full Text PDFPresent tropical peat deposits are the outcome of net carbon removal from the atmosphere and form one of the largest terrestrial organic carbon stores on the Earth. Reclamation of pristine tropical peatland areas in Southeast Asia increased strikingly during the last half of the 20th century. Drainage due to land-use change is one of the main driving factors accelerating carbon loss from the ecosystem.
View Article and Find Full Text PDFEstuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland.
View Article and Find Full Text PDF