Mol Ther Methods Clin Dev
June 2020
The interest in lentiviral vectors (LVs) has increased prominently for gene therapy applications, but few have reached the later stages of clinical trials. The main challenge has remained in scaling up the manufacturing process for the fragile vector to obtain high titers for usage. We have previously scaled up the LV production to iCELLis 500, being able to produce up to 180 L of harvest material in one run with perfusion.
View Article and Find Full Text PDFWe have previously produced viral vectors (lentiviral vector, adenoviral vector, and adeno-associated viral vector) in small and in commercial scale in adherent cells using Pall fixed-bed iCELLis bioreactor. Recently, a company called Univercells has launched a new fixed-bed bioreactor with the same cell growth surface matrix material, but with different fixed-bed structure than is used in iCELLis bioreactor. We sought to compare the new scale-X™ hydro bioreactor (2.
View Article and Find Full Text PDFThe therapeutic efficacy of a lentiviral vector (LV) expressing the thymidine kinase (HSV-TK) was studied in an immunocompetent rat glioblastoma model. Intraperitoneal ganciclovir injections (50 mg/kg/day) were administered for 14 consecutive days, resulting in reduced tumor volumes as monitored by MRI. Survival analyses revealed a significant improvement among the LV-expressing HSV-TK (LV-TK)/ganciclovir-treated animals when compared to non-treated control rats.
View Article and Find Full Text PDFAccumulating evidence suggests that constitutively active Nrf2 has a pivotal role in cancer as it induces pro-survival genes that promote cancer cell proliferation and chemoresistance. The mechanisms of Nrf2 dysregulation and functions in cancer have not been fully characterized. Here, we jointly analyzed the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Atlas (TCGA) multi-omics data in order to identify cancer types where Nrf2 activation is present.
View Article and Find Full Text PDFAccumulating evidence suggests that dysregulation of the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway resulting in constitutively active Nrf2 and increased expression of cytoprotective Nrf2 target genes, has a pivotal role in cancer. Cancer cells are able to hijack the Keap1-Nrf2 system via multiple mechanisms leading to enhanced chemo- and radio-resistance and proliferation via metabolic reprogramming as well as inhibition of apoptosis. In this mini-review, we will describe the mechanisms leading to increased Nrf2 activity in cancer with a focus on the information achieved from large-scale multi-omics projects across various cancer types.
View Article and Find Full Text PDFThe Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one of the major signaling cascades involved in cell defense and survival against endogenous and exogenous stress. While Nrf2 and its target genes provide protection against various age-related diseases including tumorigenesis, constitutively active Nrf2 in cancer cells increases the expression of cytoprotective genes and, consequently, enhances proliferation via metabolic reprogramming and inhibition of apoptosis. Herein, we review the current understanding of the regulation of Nrf2 in normal cells as well as its dual role in cancer.
View Article and Find Full Text PDF