Islet dysfunction is a primary cause of developing type 2 diabetes mellitus (T2DM). Events leading to islet failure are still poorly defined due to the complexity of the disease and scarcity of human T2DM islets. The aim of the present study was to identify cellular mechanisms involved in the T2DM pathophysiology by protein profiling islets obtained from T2DM individuals and age- and weight-matched controls using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry and surface enhanced laser desorption/ionization time-of-flight mass spectrometry.
View Article and Find Full Text PDFProlonged hyperglycaemia leads to impaired glucose-stimulated insulin secretion (GSIS) and apoptosis in insulin-producing beta-cells. The detrimental effects have been connected with glucose-induced lipid accumulation in the beta-cell. AMP-activated protein kinase (AMPK) agonist, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), promotes utilization of nutrient stores for energy production.
View Article and Find Full Text PDFExtended hyperglycaemia leads to impaired glucose-stimulated insulin secretion (GSIS) and eventually beta-cell apoptosis in individuals with type 2 diabetes mellitus. In an attempt to dissect mechanisms behind the detrimental effects of glucose, we focused on measuring changes in expression patterns of mitochondrial proteins. Impaired GSIS was observed from INS-1E cells cultured for 5 days at 20 or 27 mM glucose compared to cells cultured at 5.
View Article and Find Full Text PDF