Background: Iontophoresis studies face challenges due to the unknown absolute drug dose delivered and the possible effect of the current used in drug delivery on the microvessels, known as current-induced vasodilation. This study aimed to investigate how various concentrations of acetylcholine (ACh), delivered through transdermal iontophoresis using repeated current pulses, impact the recovery profile of the microvascular response.
Methods: The study included fifteen healthy volunteers, and microvascular responses to five concentrations of iontophorised ACh (ranging from 0.
Significance: Current methods for wound healing assessment rely on visual inspection, which gives qualitative information. Optical methods allow for quantitative non-invasive measurements of optical properties relevant to wound healing.
Aim: Spatial frequency domain imaging (SFDI) measures the absorption and reduced scattering coefficients of tissue.
Aims: The aim was to investigate the relationship between microvascular function, cardiovascular risk profile, and subclinical atherosclerotic burden.
Methods And Results: The study enrolled 3809 individuals, 50-65 years old, participating in the population-based observational cross-sectional Swedish CArdioPulmonary bioImage Study. Microvascular function was assessed in forearm skin using an arterial occlusion and release protocol determining peak blood oxygen saturation (OxyP).
Significance: Knowledge of optical properties is important to accurately model light propagation in tissue, but reference data are sparse.
Aim: The aim of our study was to present skin optical properties from a large Swedish cohort including 3809 subjects using a three-layered skin model and spatially resolved diffuse reflectance spectroscopy (Periflux PF6000 EPOS).
Approach: Diffuse reflectance spectra (475 to 850 nm) at 0.
Takayasu arteritis (TAK) is a rare inflammatory disease affecting aorta and its major branches. Ultrasound (US) can detect inflammatory features in the arterial wall, but less is known regarding skin microcirculation and vascular hemodynamics. The aim was to study if assessment of these variables could add valuable information regarding vascular affection in TAK.
View Article and Find Full Text PDFThe high-density microneedle array patch (HD-MAP) is a promising alternative vaccine delivery system device with broad application in disease, including SARS-CoV-2. Skin reactivity to HD-MAP applications has been extensively studied in young individuals, but not in the >65 years population, a risk group often requiring higher dose vaccines to produce protective immune responses. The primary aims of the present study were to characterise local inflammatory responses and barrier recovery to HD-MAPs in elderly skin.
View Article and Find Full Text PDFSignificance: Tissue simulating phantoms are an important part of validating biomedical optical techniques. Tissue pathology in inflammation and oedema involves changes in both water and hemoglobin fractions.
Aim: We present a method to create solid gelatin-based phantoms mimicking inflammation and oedema with adjustable water and hemoglobin fractions.
The objective of this study was to explore the associations between skin microcirculatory function and established cardiovascular risk factors in a large Swedish cohort. As part of the Swedish CArdioPulmonary bioImage Study (SCAPIS), microcirculatory data were acquired at Linköping University hospital, Linköping, Sweden during 2016-2017. The subjects, aged 50-64 years, were randomly selected from the national population register.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is associated with premature cardiovascular disease (CVD) and mortality, unexplained by traditional risk factors. Impairment of microcirculation and vascular hemodynamics may represent early signs of vascular affection. We hypothesized that studies of microcirculation and pulse waves may provide additional information, compared to ultrasound (US) alone, for the detection of early vascular disease in SLE.
View Article and Find Full Text PDFSignificance: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to measure absorption and scattering of tissue, from which several chromophore concentrations (e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated.
View Article and Find Full Text PDFThe objective of this study was to assess normative values for comprehensive forearm skin microcirculatory function: oxygen saturation, tissue fraction of red blood cells (RBCs), and speed-resolved perfusion. Furthermore, to examine the influence of age and sex on microcirculatory function. Measurements were performed using a noninvasive probe-based system, including diffuse reflectance spectroscopy and laser-Doppler flowmetry, yielding output data in absolute units.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Approximately 20-30% of all road fatalities are related to driver sleepiness. A long-lasting goal in driver state research has therefore been to develop a robust sleepiness detection system. Since the alertness level is reflected in autonomous nervous system activity, it has been suggested that various heart rate variability (HRV) metrics can be used as features for driver sleepiness classification.
View Article and Find Full Text PDFThe PeriFlux 6000 EPOS system combines diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF) for the assessment of oxygen saturation (expressed in percentage), red blood cell (RBC) tissue fraction (expressed as volume fraction, %RBC), and perfusion (%RBC × mm / s) in the microcirculation. It also allows the possibility of separating the perfusion into three speed regions (0 to 1, 1 to 10, and >10 mm / s). We evaluate the speed-resolved perfusion components, i.
View Article and Find Full Text PDFWe have determined in vivo optical scattering properties of normal human skin in 1734 subjects, mostly with fair skin type, within the Swedish CArdioPulmonary bioImage Study. The measurements were performed with a noninvasive system, integrating spatially resolved diffuse reflectance spectroscopy and laser Doppler flowmetry. Data were analyzed with an inverse Monte Carlo algorithm, accounting for both scattering, geometrical, and absorbing properties of the tissue.
View Article and Find Full Text PDFSkin and kidney microvascular functions may be affected independently in diabetes mellitus. We investigated skin microcirculatory function in 79 subjects with diabetes type 2, where 41 had microalbuminuria and 38 not, and in 41 age-matched controls. The oxygen saturation, fraction of red blood cells and speed-resolved microcirculatory perfusion (% red blood cells × mm/s) divided into three speed regions: 0-1, 1-10 and above 10 mm/s, were assessed during baseline and after local heating of the foot with a new device integrating diffuse reflectance spectroscopy and laser Doppler flowmetry.
View Article and Find Full Text PDFWe have developed a new fiber-optic system that combines diffuse reflectance spectroscopy (DRS) and laser Doppler Flowmetry (LDF) for a multi-modal assessment of the microcirculation. Quantitative data is achieved with an inverse Monte Carlo algorithm based on an individually adaptive skin model. The output parameters are calculated from the model and given in absolute units: hemoglobin oxygen saturation (%), red blood cell (RBC) tissue fraction (%), and the speed resolved RBC perfusion separated into three speed regions; 0-1mm/s, 1-10mm/s and above 10mm/s (% mm/s).
View Article and Find Full Text PDF