Publications by authors named "Hanna H Cramer"

Redox-active pyridine(diimine) (PDI) iron catalysts promote the reversible [2 + 2] cycloaddition of alkenes and dienes to cyclobutane derivatives that have applications ranging from fuels to chemically recyclable polymers. Metallacycles were identified as key intermediates, and spin crossover from the singlet to the triplet surface was calculated to facilitate the reductive coupling step responsible for the formation of the four-membered ring. In this work, a series of sterically and electronically differentiated PDI ligands was studied for the [2 + 2] cycloaddition of ethylene and butadiene to vinylcyclobutane.

View Article and Find Full Text PDF

The stepwise catalytic reduction of carbon dioxide (CO) to formic acid, formaldehyde, and methanol opens non-fossil pathways to important platform chemicals. The present article aims at identifying molecular control parameters to steer the selectivity to the three distinct reduction levels using organometallic catalysts of earth-abundant first-row metals. A linear scaling relationship was developed to map the intrinsic reactivity of 3d transition metal pincer complexes to their activity and selectivity in CO hydrosilylation.

View Article and Find Full Text PDF

An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality.

View Article and Find Full Text PDF

The selective hydrosilylation of carbon dioxide (CO) to either the formic acid, formaldehyde, or methanol level using a molecular cobalt(II) triazine complex can be controlled based on reaction parameters such as temperature, CO pressure, and concentration. Here, we rationalize the catalytic mechanism that enables the selective arrival at each product platform. Key reactive intermediates were prepared and spectroscopically characterized, while the catalytic mechanism and the energy profile were analyzed with density functional theory (DFT) methods and microkinetic modeling.

View Article and Find Full Text PDF

The catalytic reduction of carbon dioxide (CO ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.

View Article and Find Full Text PDF

The reaction of the ferrous complex [LFe(NCMe) ](OTf) (1), which contains a macrocyclic tetracarbene as ligand (L), with Na(OCP) generates the OCP -ligated complex [LFe(PCO)(CO)]OTf (2) together with the dinuclear μ-phosphido complex [(LFe) P](OTf) (3), which features an unprecedented linear Fe-(μ-P)-Fe motif and a "naked" P-atom bridge that appears at δ=+1480 ppm in the P NMR spectrum. 3 exhibits rich redox chemistry, and both the singly and doubly oxidized species 4 and 5 could be isolated and fully characterized. X-ray crystallography, spectroscopic studies, in combination with DFT computations provide a comprehensive electronic structure description and show that the Fe-(μ-P)-Fe core is highly covalent and structurally invariant over the series of oxidation states that are formally described as ranging from Fe Fe to Fe Fe .

View Article and Find Full Text PDF

Metal-superoxo species are typically proposed as key intermediates in the catalytic cycle of dioxygen activation by metalloenzymes involving different transition metal cofactors. In this regard, while a series of Fe-, Co-, and Ni-superoxo complexes have been reported to date, well-defined Mn-superoxo complexes remain rather rare. Herein, we report two mononuclear Mn-superoxo species, Mn(BDPP)(O) (, HBDPP = 2,6-bis((2-()-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Mn(BDPP)(O) (, HBDPP = 2,6-bis((2-()-di(4-bromo)phenylhydroxyl-methyl-1-pyrrolidinyl)methyl)pyridine), synthesized by bubbling O into solutions of their Mn precursors, Mn(BDPP) () and Mn(BDPP) (), at -80 °C.

View Article and Find Full Text PDF

The Lewis acid-base reaction between a nucleophilic hafnocene-based germylene and tris-pentafluorophenylborane (B(CF)) to give the conventional B-Ge bonded species in almost quantitative yield is reported. This reaction is surprisingly slow, and during its course, radical intermediates are detected by EPR and UV-vis spectroscopy. This suggests that the reaction is initiated by a single electron-transfer step.

View Article and Find Full Text PDF