Fog networking has become an established architecture addressing various applications with strict latency, jitter, and bandwidth constraints. Fog Nodes (FNs) allow for flexible and effective computation offloading and content distribution. However, the transmission of computational tasks, the processing of these tasks, and finally sending the results back still incur energy costs.
View Article and Find Full Text PDFMachine learning-based classification algorithms allow communication and computing (2C) task offloading from the end devices to the edge computing network servers. In this paper, we consider task classification based on the hybrid k-means and k'-nearest neighbors algorithms. Moreover, we examine the poisoning attacks on such ML algorithms, namely noise-like jamming and targeted data feature falsification, and their impact on the effectiveness of 2C task allocation.
View Article and Find Full Text PDFThe well known cloud computing is being extended by the idea of fog with the computing nodes placed closer to end users to allow for task processing with tighter latency requirements. However, offloading of tasks (from end devices to either the cloud or to the fog nodes) should be designed taking energy consumption for both transmission and computation into account. The task allocation procedure can be challenging considering the high number of arriving tasks with various computational, communication and delay requirements, and the high number of computing nodes with various communication and computing capabilities.
View Article and Find Full Text PDFSpectrum sensing (SS) is an important tool in finding new opportunities for spectrum sharing. The users, called Secondary Users (SU), who do not have a license to transmit without hindrance, need to employ SS in order to detect and use the spectrum without interfering with the licensed users' (primary users' (PUs')) transmission. Deep learning (DL) has proven to be a good choice as an intelligent SS algorithm that considers radio environmental factors in the decision-making process.
View Article and Find Full Text PDFIn this paper, a new perspective of using flexible, brain-inspired, analog and digital wireless transmission in massive future networks, is presented. Inspired by the nervous impulses transmission mechanisms in the human brain which is highly energy efficient, we consider flexible, wireless analog and digital transmission on very short distances approached from the energy efficiency point of view. The energy efficiency metric is compared for the available transmission modes, taking the circuit power consumption model into account.
View Article and Find Full Text PDFThe growing number of radio communication devices and limited spectrum resources are drivers for the development of new techniques of dynamic spectrum access and spectrum sharing. In order to make use of the spectrum opportunistically, the concept of cognitive radio was proposed, where intelligent decisions on transmission opportunities are based on spectrum sensing. In this paper, two Machine Learning (ML) algorithms, namely k-Nearest Neighbours and Random Forest, have been proposed to increase spectrum sensing performance.
View Article and Find Full Text PDF