Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity.
View Article and Find Full Text PDFThe identification of homogeneous subgroups of patients with psychiatric disorders can play an important role in achieving personalized medicine and is essential to provide insights for understanding neuropsychological mechanisms of various mental disorders. The functional connectivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric disorders in a clinically useful way is still being studied. In this work, we propose a framework that makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem.
View Article and Find Full Text PDFRecent years have seen increased research interest in replacing the computationally intensive Magnetic resonance (MR) image reconstruction process with deep neural networks. We claim in this paper that the traditional image reconstruction methods and deep learning (DL) are mutually complementary and can be combined to achieve better image reconstruction quality. To test this hypothesis, a hybrid DL image reconstruction method was proposed by combining a state-of-the-art deep learning network, namely a generative adversarial network with cycle loss (CycleGAN), with a traditional data reconstruction algorithm: Projection Onto Convex Set (POCS).
View Article and Find Full Text PDFPurpose: Glutamate weighted Chemical Exchange Saturation Transfer (GluCEST) MRI is a noninvasive technique for mapping parenchymal glutamate in the brain. Because of the sensitivity to field (B ) inhomogeneity, the total acquisition time is prolonged due to the repeated image acquisitions at several saturation offset frequencies, which can cause practical issues such as increased sensitivity to patient motions. Because GluCEST signal is derived from the small z-spectrum difference, it often has a low signal-to-noise-ratio (SNR).
View Article and Find Full Text PDFMagn Reson Imaging
May 2020
Purpose: Arterial spin labeling (ASL) perfusion MRI is a noninvasive technique for measuring cerebral blood flow (CBF) in a quantitative manner. A technical challenge in ASL MRI is data processing because of the inherently low signal-to-noise-ratio (SNR). Deep learning (DL) is an emerging machine learning technique that can learn a nonlinear transform from acquired data without using any explicit hypothesis.
View Article and Find Full Text PDF