Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).
View Article and Find Full Text PDFIn the field of cancer therapy, inhibiting autophagy has emerged as a promising strategy. However, pharmacological disruption of autophagy can lead to the upregulation of programmed death-ligand 1 (PD-L1), enabling tumor immune evasion. To address this issue, we developed innovative ROS-responsive cationic poly(ethylene imine) (PEI) nanogels using selenol chemistry-mediated multicomponent reaction (MCR) technology.
View Article and Find Full Text PDFBackground: There is significant interest in the use of web-based technologies for rehabilitation of patients after total knee arthroplasty (TKA). BPMpathway is a combination of a wireless BPMpro sensor and mobile app to provide a personalized post-operative support programme for TKA patients.
Objective: To investigate the impact of the BPMpathway exercise rehabilitation system on home rehabilitation for TKA patients.
Approaches for treating posterolateral tibial plateau fractures vary among surgeons, and the inverted L-shaped approach is a known option. This article aims to introduce a new modified posterolateral inverted L-shaped approach for isolated posterolateral tibial plateau fractures and study its feasibility. Medical records of patients with posterolateral tibial plateau fractures were reviewed.
View Article and Find Full Text PDFObjective: To perform hemiarthroplasty (HA) on elderly patients with femoral neck fractures using cemented and biologic prostheses and then compare the bone loss around the two types of prostheses after surgery.
Methods: A total of 60 patients aged over 75 years (with a mean age of 83.5 years) and suffering from femoral neck fracture (Garden types III and IV) from January 2018 to December 2020 were selected; they were randomly divided into group A ( = 30, cemented prostheses) and group B ( = 30, biologic prostheses) and received HA.
Diselenide, as a dynamic covalent bond, has been widely applied in functional materials due to its response to light, heat, sonication, pH, and other stimuli. Herein, a polarization-induced metathesis mechanism for diselenides under heating conditions in the dark is proposed. First, a radical trap experiment is used to prove that the exchange reaction of diselenides in the dark does not involve any radicals.
View Article and Find Full Text PDFChin Med J (Engl)
November 2018
Background: Estrogen, as an important hormone in human physiological process, is closely related to bone metabolism. The aim of this study was to investigate the mechanism of estrogen on osteoblasts metabolism in MC3T3-E1 cells.
Methods: We treated the MC3T3-E1 cells with different concentrations of β-estradiol (0.
Biomed Pharmacother
May 2018
Glucocorticoid-induced osteoporosis (GIOP) is a serious clinical bone disease that results from the long-term consumption of glucocorticoids or glucocorticoid-like drugs. Although many studies have attempted to determine the mechanisms of GIOP, they are still unclear. In this study, we established a zebrafish model of glucocorticoid-like drug-induced osteoporosis by treating larvae with prednisolone.
View Article and Find Full Text PDFEstrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation.
View Article and Find Full Text PDFOsteoblasts and osteoclasts are responsible for the formation and resorption of bone, respectively. An imbalance between these two processes results in a disease called osteoporosis, in which a decreased level of bone strength increases the risk of a bone fracture. MicroRNAs (miRNAs) are small non-coding RNA molecules of 18-25 nucleotides that have been previously shown to control bone metabolism by regulating osteoblast and osteoclast differentiation.
View Article and Find Full Text PDF