Background: We recently developed a new tetracycline-inducible gene switch employing the tetracycline operator-containing hCMV major immediate-early promoter and the tetracycline repressor, tetR, rather than the previously used tetR-mammalian cell transcription factor fusion derivatives.
Materials And Methods: The present study demonstrates that this tetR-mediated transcription repression system can function as a powerful gene switch for On-and-Off regulation of therapeutic gene expression in ex vivo gene transfer protocols. Firstly, for achieving regulated gene expression in a localized tissue environment, R11/OEGF cells, a stable line that expresses hEGF under the control of the tetR-mediated transcription repression switch, were transplanted into porcine full-thickness wounds enclosed by wound chambers.
We have previously reported that endogenous vascular endothelial growth factor (VEGF) concentration in older pig wounds peaked later and at one-fourth the level of young pigs. These data suggested that VEGF might play a major role in the healing of full-thickness wounds in the aged pig. By in vivo gene transfer using the microseeding technique, we treated full-thickness wounds with different doses of VEGF-expressing adenoviral vector (Ad-VEGF) varying from 1 x 10(7) to 2.
View Article and Find Full Text PDFBy selectively regulating the expression of the trans-dominant-negative mutant polypeptide UL9-C535C, of herpes simplex virus type 1 (HSV-1) origin binding protein UL9 with the tetracycline repressor (tetR)-mediated gene switch, we recently generated a novel replication-defective and anti-HSV-specific HSV-1 recombinant, CJ83193. The UL9-C535C peptides expressed by CJ83193 can function as a potent intracellular therapy against its own replication, as well as the replication of wild-type HSV-1 and HSV-2 in coinfected cells. In this report, we demonstrate that CJ83193 cannot initiate acute productive infection in corneas of infected mice nor can it reactivate from trigeminal ganglia of mice latently infected by CJ83193 in a mouse ocular model.
View Article and Find Full Text PDF