Mushroom chitin membranes with controllable pore structures were fabricated through a simple process with naturally abundant mushrooms. A freeze-thaw method was applied to alter the pore structures of the membranes, which consist of chitin fibril clusters within the glucan matrix. With tunable pore size and distribution, mushroom chitin membranes could effectively separate stable oil/water emulsions (dodecane, toluene, isooctane, and chili oil) with various chemical properties and concentrations and particle contaminants (carbon black and microfibers) from water.
View Article and Find Full Text PDFThis study explores a novel approach of multiscale modeling and simulation to characterize the filtration behavior of a facepiece in varied particulate conditions. Sequential multiscale modeling was performed for filter media, filtering facepiece, and testing setup. The developed virtual models were validated for their morphological characteristics and filtration performance by comparing with the data from the physical experiments.
View Article and Find Full Text PDFMetal-organic framework (MOF), an emerging class of porous hybrid inorganic-organic crystals, has been applied for various environmental remediation strategies including liquid and air filtration. In this study, the role of the zeolite imidazole framework-8 (ZIF-8) was explored on the charge trapping ability and its contribution to capturing the targeted pollutants of NaCl nanoparticles and SO gas. Poly(lactic acid) fibers with controlled surface pores were electrospun using water vapor-induced phase separation, and the fiber surface was uniformly coated with ZIF-8 crystals via an growth method.
View Article and Find Full Text PDF