Publications by authors named "Hanjing Peng"

The mechanisms of mAb-induced ADCC have been well established. However, the ADCC bioassays used to quantify mAb-induced ADCC require continued development/refinement to properly assess and compare the potency of newly developed therapeutic mAbs and biosimilars to meet regulatory requirements. We used trastuzumab and a lactate dehydrogenase (LDH)-based ADCC bioassay as a model to define critical parameters of the ADCC bioassay, describing how several bioassay parameters, including preparation of effector cells, E/T ratio, target cell selection, bioassay media components, and treatment time can influence the data quality of the ADCC activity.

View Article and Find Full Text PDF
Article Synopsis
  • Bispecific T-cell-engaging antibodies are complex drugs that enhance T cells' ability to target and destroy tumor cells, with seven already approved for use.* -
  • They come in two main formats, IgG-like and non-IgG-like, which may affect their potency and how they work, indicating a need for further research.* -
  • This study compared two types of bispecific antibodies targeting EGFR and CD3 in breast and ovarian cancer cells, finding that structural differences significantly influence their effectiveness and mechanisms in fighting cancer.*
View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to find new medicines to treat COVID-19 because of fast-spreading variants like Omicron that can avoid antibodies.
  • They created a special cell model to study how a protein called ACE2 helps the virus enter human cells and how to reduce ACE2 levels.
  • The best results came from using two specific drugs together, which helped stop the virus from getting into certain human cells, suggesting a way to find new treatments for COVID-19.
View Article and Find Full Text PDF

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity.

View Article and Find Full Text PDF

Rapadocin is a novel rapamycin-inspired polyketide-tetrapeptide hybrid macrocycle that possesses highly potent and isoform-specific inhibitory activity against the human equilibrative nucleoside transporter 1 (hENT1). Rapadocin contains an epimerizable chiral center in phenylglycine and an olefin group, and can thus exist as a mixture of four stereoisomers. Herein, we report the first total synthesis of the four stereoisomers of rapadocin using two different synthetic strategies and the assignment of their structures.

View Article and Find Full Text PDF

Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized.

View Article and Find Full Text PDF

Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA).

View Article and Find Full Text PDF

The combination of AMD3100 and low-dose FK506 has been shown to accelerate wound healing in vivo. Although AMD3100 is known to work by releasing hematopoietic stem cells into circulation, the mechanism of FK506 in this setting has remained unknown. In this study, we investigated the activities of FK506 in human cells and a diabetic-rat wound model using a non-immunosuppressive FK506 analog named FKVP.

View Article and Find Full Text PDF

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains.

View Article and Find Full Text PDF

Background: Cystathionine-γ-lyase (CSE)-derived hydrogen sulfide (H2S) is a potent cardioprotective agent. We investigated the effects of diallyl trisulfide (DATS) on CSE expression and H2S generation in myocardium and examined whether DATS-mediated H2S generation effectively protects rat heart from diabetes-induced cardiac damage.

Methods: The correlations between the effects of hyperglycemia and diabetes on CSE expression and the effects of DATS and H2S on hyperglycemia and diabetes were examined in vitro in the cardiomyocyte cell line H9c2 and in vivo in hearts from rats with streptozotocin-induced diabetes mellitus (DM).

View Article and Find Full Text PDF

Plasma homocysteine (Hcy) is an important risk factor for various diseases. A novel redox-sensitive fluorescent probe is developed for the selective detection of Hcy. A linear calibration curve has been obtained in buffer and plasma for the quantitative determination of Hcy in such media.

View Article and Find Full Text PDF

Because of the biological relevance of thiols and sulfides such as cysteine, homocysteine, glutathione and hydrogen sulfide, their detection has attracted a great deal of research interest. Fluorescent probes are emerging as a new strategy for thiol and hydrogen sulfide analysis due to their high sensitivity, low cost, and ability to detect and image thiols in biological samples. In this short review, we have summarized recent advances in the development of thiol and hydrogen sulfide reactive fluorescent probes.

View Article and Find Full Text PDF

Hydrogen sulfide has recently been found decreased in chronic kidney disease. Here we determined the effect and underlying mechanisms of hydrogen sulfide on a rat model of unilateral ureteral obstruction. Compared with normal rats, obstructive injury decreased the plasma hydrogen sulfide level.

View Article and Find Full Text PDF

A second-generation sulfonyl azide-based fluorescent probe, 2,6-DNS-Az, has been developed for the quantitative detection of H2S in aqueous media such as phosphate buffer and bovine serum. Compare to the first-generation 1,5-DNS-Az probe, this probe shows both high sensitivity in phosphate buffer without the need for addition of surfactant and selectivity for sulfide over other anions and biomolecules, and thus can be used as a useful tool for detection of H2S in the biological system.

View Article and Find Full Text PDF

Azido nitrobenzoxadiazole (NBD) was observed to undergo a 'reduction' reaction in the absence of an obvious reducing agent, leading to amine formation. In the presence of an excess amount of DMSO, a sulfoxide conjugate was also formed. The ratio of these two products was both temperature- and solvent-dependent, with the addition of water significantly enhancing the ratio of the 'reduction' product.

View Article and Find Full Text PDF

Post-synthesis modification of DNA is an important way of functionalizing DNA molecules. Herein, we describe a method that first enzymatically incorporates a cyanobenzothiazole (CBT)-modified thymidine. The side-chain handle CBT can undergo a rapid and site-specific cyclization reaction with 1,2-aminothiols to afford DNA functionalization in aqueous solution.

View Article and Find Full Text PDF

Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H(2)S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis.

View Article and Find Full Text PDF

In this letter, a high-throughput virtual screening was accomplished to identify potent inhibitors against AI-2 quorum sensing on the basis of Vibrio harveyi LuxPQ crystal structure. Seven compounds were found to inhibit AI-2 quorum sensing with IC(50) values in the micromolar range, and presented low cytotoxicity or no cytotoxicity in V. harveyi.

View Article and Find Full Text PDF

DNA molecules are known to be important materials in sensing, aptamer selection, nanocomputing, and construction of unique architectures. The incorporation of modified nucleobases affords unique DNA properties for applications in areas that would otherwise be difficult or not possible. Earlier, we demonstrated that the boronic acid moiety can be introduced into DNA through polymerase-catalyzed reactions.

View Article and Find Full Text PDF

The first chemical incorporation of the boronic acid group into DNA using a copper-free click reagent was reported. Compared with the PCR-based method, this approach allows for site-specific incorporation and synthesis on a larger scale.

View Article and Find Full Text PDF

Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents.

View Article and Find Full Text PDF

Bacterial quorum sensing has received much attention in recent years because of its relevance to pathological events such as biofilm formation. Based on the structures of two lead inhibitors (IC50: 35-55 microM) against autoinducer-2-mediated quorum sensing identified through virtual screening, we synthesized 39 analogues and examined their inhibitory activities. Twelve of these new analogues showed equal or better inhibitory activities than the lead inhibitors.

View Article and Find Full Text PDF

Bacterial quorum sensing refers to the ability of bacteria to control gene expression through the detection of a threshold concentration of certain chemicals called autoinducer(s), which are secreted by self and/or other bacteria. Quorum sensing is implicated in the regulation of pathologically relevant events such as biofilm formation, virulence, conjugation, sporulation, and swarming mobility. Inhibitors of bacterial quorum sensing are valuable research tools and potential antimicrobial agents.

View Article and Find Full Text PDF