Functional groups (FGs) represent a classification scheme designed to study the ecological adaptations of phytoplankton. However, FG dynamics studies in phytoplankton are often conducted independent of taxonomic studies, so the factors influencing community dynamics have not been sufficiently investigated or compared between the two classification systems. In this study, we compared the intricate relationship between taxonomic and FG compositions in North China lakes and delve into the key environmental drivers shaping phytoplankton community dynamics.
View Article and Find Full Text PDFGround-level O pollution in the Pearl River Delta region (PRD) is closely related to anthropogenic, natural emissions and regional transport. However, the interactions among different sources and natural intervention in modulating anthropogenic management have not been comprehensively assessed. Here, the WRF-CMAQ-MEGAN modeling system was utilized to simulate an O episode over PRD.
View Article and Find Full Text PDFPhenolic root exudates (PREs) secreted by wetland plants facilitate the accumulation of iron in the rhizosphere, potentially providing the essential active iron required for the generation of enzymes that degrade polycyclic aromatic hydrocarbon, thereby enhancing their biodegradation. However, the underlying mechanisms involved are yet to be elucidated. This study focuses on phenanthrene (PHE), a typical polycyclic aromatic hydrocarbon pollutant, utilizing representative PREs from wetland plants, including p-hydroxybenzoic, p-coumaric, caffeic, and ferulic acids.
View Article and Find Full Text PDFMicrobial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations.
View Article and Find Full Text PDFDue to the inconsistent absorption and scattering effects of different wavelengths of light, underwater images often suffer from color casts, blurred details, and low visibility. To address this image degradation problem, we propose a robust and efficient underwater image enhancement method named UIEOGP. It can be divided into the following three steps.
View Article and Find Full Text PDFA nanocrystal heterojunction LaVO4TiO2 visible light photocatalyst has been successfully prepared by a simple coupled method. The catalyst was characterized by powder X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectra, photoluminescence, and electrochemistry technology.The results showed that the prepared nanocomposite catalysts exhibited strong photocatalytic activity for decomposition of benzene under visible light irradiation with high photochemical stability.
View Article and Find Full Text PDFThe bifunctional photocatalyst Pt/TiO2-xNx has been successfully prepared by wet impregnation. The properties of Pt/ TiO2-xNx have been investigated by diffuse reflectance spectra, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, a photoluminescence technique with terephthalic acid, and electric field induced surface photovoltage spectra. The photocatalytic activity of the sample was evaluated by the decomposition of volatile organic pollutants (VOCs) in a H2-O2 atmosphere under visible light irradiation.
View Article and Find Full Text PDF