Publications by authors named "Hanisco T"

Article Synopsis
  • Wildfires are a growing contributor to air pollution, particularly due to reactive organic compounds (ROC), which have varying health impacts based on their toxicity and abundance.
  • A study combining field campaign data and air quality modeling found that current emissions estimates capture only 40-45% of the total ROC released from wildfires.
  • The research indicates that particulate ROC could significantly affect health risks from smoke exposure, highlighting the need for more accurate toxicity data on these compounds.
View Article and Find Full Text PDF

A tunable narrow linewidth UV laser near 308 nm is necessary for highly sensitive hydroxyl (OH) radical measurement. We demonstrated a high-power fiber-based single frequency tunable pulsed UV laser at 308 nm. The UV output is generated from the sum frequency of a 515 nm fiber laser and a 768 nm fiber laser, which are harmonic generations from our proprietary high-peak-power silicate glass Yb- and Er-doped fiber amplifiers.

View Article and Find Full Text PDF

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0).

View Article and Find Full Text PDF

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements.

View Article and Find Full Text PDF

Fairbanks, Alaska, is a subarctic city with fine particle (PM) concentrations that exceed air quality regulations in winter due to weak dispersion caused by strong atmospheric inversions, local emissions, and the unique chemistry occurring under the cold and dark conditions. Here, we report on observations from the winters of 2020 and 2021, motivated by our pilot study that showed exceptionally high concentrations of fine particle hydroxymethanesulfonate (HMS) or related sulfur(IV) species (e.g.

View Article and Find Full Text PDF

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O). Here, to investigate the highly variable O chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O chemistry exhibits rapid transition in chemical regimes.

View Article and Find Full Text PDF

In this work, a new commercially available, laser-based, and ultra-portable formaldehyde (HCHO) gas sensor is characterized, and its usefulness for monitoring HCHO mixing ratios in both indoor and outdoor environments is assessed. Stepped calibrations and intercomparison with well-established laser-induced fluorescence (LIF) instrumentation allow a performance evaluation of the absorption-based, mid-infrared HCHO sensor from Aeris Technologies, Inc. The Aeris sensor displays linear behavior (R > 0.

View Article and Find Full Text PDF

We report airborne measurements of acetaldehyde (CHCHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CHCHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CHCHO is estimated to be 34 Tg a (42 Tg a if considering bubble-mediated transfer), and the ocean impacts on tropospheric CHCHO are mostly confined to the marine boundary layer.

View Article and Find Full Text PDF

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding.

View Article and Find Full Text PDF

Hydroxymethyl hydroperoxide (HMHP), formed in the reaction of the C Criegee intermediate with water, is among the most abundant organic peroxides in the atmosphere. Although reaction with OH is thought to represent one of the most important atmospheric removal processes for HMHP, this reaction has been largely unstudied in the laboratory. Here, we present measurements of the kinetics and products formed in the reaction of HMHP with OH.

View Article and Find Full Text PDF

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO = NO + NO).

View Article and Find Full Text PDF

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HO. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models.

View Article and Find Full Text PDF

We report enhancements of glyoxal and methylglyoxal relative to carbon monoxide and formaldehyde in agricultural biomass burning plumes intercepted by the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus campaigns. Glyoxal and methylglyoxal were measured using broadband cavity enhanced spectroscopy, which for glyoxal provides a highly selective and sensitive measurement. While enhancement ratios of other species such as methane and formaldehyde were consistent with previous measurements, glyoxal enhancements relative to carbon monoxide averaged 0.

View Article and Find Full Text PDF

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014.

View Article and Find Full Text PDF

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.

View Article and Find Full Text PDF

Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme.

View Article and Find Full Text PDF

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background.

View Article and Find Full Text PDF

Formation of organic nitrates (RONO) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NO), but the chemistry of RONO formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO) in the GEOS-Chem global chemical transport model with ∼25 × 25 km resolution over North America. We evaluate the model using aircraft (SEACRS) and ground-based (SOAS) observations of NO, BVOCs, and RONO from the Southeast US in summer 2013.

View Article and Find Full Text PDF

Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions.

View Article and Find Full Text PDF

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.

View Article and Find Full Text PDF

The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NO (= NO + NO). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation.

View Article and Find Full Text PDF

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEACRS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform.

View Article and Find Full Text PDF

High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10(12).

View Article and Find Full Text PDF

Recent laboratory measurements of the absorption cross sections of the ClO dimer, ClOOCl, have called into question the validity of the mechanism that describes the catalytic removal of ozone by chlorine. Here we describe direct measurements of the rate-determining step of that mechanism, the production of Cl atoms from the photolysis of ClOOCl, under laboratory conditions similar to those in the stratosphere. ClOOCl is formed in a cold-temperature flowing system, with production initiated by a microwave discharge of Cl(2) or photolysis of CF(2)Cl(2).

View Article and Find Full Text PDF

We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H(2)O, HDO, and H(2) (18)O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure these or other trace atmospheric species at concentrations in the ppbv range. The Harvard ICOS isotope instrument has been integrated onto NASA's WB-57 high-altitude research aircraft and to date has flown successfully in four field campaigns from winter 2004-2005 to the present.

View Article and Find Full Text PDF