Publications by authors named "Hanisch U"

The term 'microglia' was first introduced into the scientific literature a century ago. The various eras of microglial research have been defined not only by the number of reports subsequently generated but, more critically, also by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models, as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago.

View Article and Find Full Text PDF

Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries.

View Article and Find Full Text PDF

Background: Bacterial meningitis is a fatal disease with a mortality up to 30% and neurological sequelae in one fourth of survivors. Available vaccines do not fully protect against this lethal disease. Here, we report the protective effect of synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG ODN) against the most frequent form of bacterial meningitis caused by Streptococcus pneumoniae.

View Article and Find Full Text PDF

Background: Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis.

View Article and Find Full Text PDF

More than half of all brain metastases show infiltrating rather than displacing growth at the macro-metastasis/organ parenchyma interface (MMPI), a finding associated with shorter survival. The lymphoid enhancer-binding factor-1 (LEF1) is an epithelial-mesenchymal transition (EMT) transcription factor that is commonly overexpressed in brain-colonizing cancer cells. Here, we overexpressed LEF1 in an in vivo breast cancer brain colonization model.

View Article and Find Full Text PDF

Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood.

View Article and Find Full Text PDF

Background: Bacterial meningitis is associated with high mortality and long-term neurological sequelae. Increasing the phagocytic activity of microglia could improve the resistance of the CNS against infections. We studied the influence of activin A, a member of the TGF-β family with known immunoregulatory and neuroprotective effects, on the functions of microglial cells in vitro.

View Article and Find Full Text PDF

Purpose: Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults. The epigenetically active ribonucleoside analog 5-azacitidine is a new therapy option that changes tumor cell chromatin, which is frequently modified by methylation and deacetylation in malignant gliomas.

Methods: In vitro, we analyzed cell viability, cell apoptosis, and migration of human GBM cells.

View Article and Find Full Text PDF

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF).

View Article and Find Full Text PDF

Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock.

View Article and Find Full Text PDF

Aim: To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry.

Methods: Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP).

View Article and Find Full Text PDF

Background: Pneumococcal proteins involved in the resistance against oxidative stress are present in all strains and therefore are potential antigens that could be suitable for new therapies and/or vaccines. Their role in the pathogenesis of pneumococcal meningitis has not been addressed.

Methods: We investigated the individual contributions of extracellular thioredoxin lipoproteins (Etrx1 and Etrx2) and the intracellular and extracellular methionine sulfoxide reductases (SpMsrAB1 and SpMsrAB2, respectively) in the progression and outcome of pneumococcal meningitis, using Kaplan-Meier survival curves, bacteriological and histological studies, and measurements of proinflammatory mediators.

View Article and Find Full Text PDF

Objective: To test whether Toll-like receptor (TLR) signaling plays a key role for reduced nuclear factor B (NF-κB) activation after laquinimod treatment in the model of cuprizone-induced demyelination, oligodendrocyte apoptosis, inflammation, and axonal damage.

Methods: Ten-week-old C57BL/6J, TLR4(-/-), and MyD88(-/-) mice received 0.25% cuprizone for 6 weeks and were treated daily with 25 mg/kg laquinimod or vehicle.

View Article and Find Full Text PDF

Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia-neuron interactions in organotypic hippocampal slice cultures, i.e.

View Article and Find Full Text PDF

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia.

View Article and Find Full Text PDF

Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome.

View Article and Find Full Text PDF

Background: The examination of as large a number of lymph nodes as possible in rectal carcinoma resectates is important for exact staging. However, after neoadjuvant radiochemotherapy (RCT), it can be difficult to obtain a sufficient number of lymph nodes. We therefore investigated whether staining with methylene blue via the inferior mesenteric artery can lead to an increase in the yield of lymph nodes in rectal carcinoma tissue after neoadjuvant RCT.

View Article and Find Full Text PDF

The mononuclear phagocytic system is categorized in three major groups: monocyte-derived cells (MCs), dendritic cells and resident macrophages. During breast cancer progression the colony stimulating factor 1 (CSF-1) can reprogram MCs into tumor-promoting macrophages in the primary tumor. However, the effect of CSF-1 during colonization of the brain parenchyma is largely unknown.

View Article and Find Full Text PDF

Traumatic brain injury causes progressive brain atrophy and cognitive decline. Surprisingly, an early treatment with erythropoietin (EPO) prevents these consequences of secondary neurodegeneration, but the mechanisms have remained obscure. Here we show by advanced imaging and innovative analytical tools that recombinant human EPO, a clinically established and neuroprotective growth factor, dampens microglial activity, as visualized also in vivo by a strongly attenuated injury-induced cellular motility.

View Article and Find Full Text PDF

Microglia, the innate immune cells of the central nervous system (CNS), react to endotoxins like bacterial lipopolysaccharides (LPS) with a pronounced inflammatory response. To avoid excess damage to the CNS, the microglia inflammatory response needs to be tightly regulated. Here we report that a single LPS challenge results in a prolonged blunted pro-inflammatory response to a subsequent LPS stimulation, both in primary microglia cultures (100 ng/ml) and in vivo after intraperitoneal (0.

View Article and Find Full Text PDF

The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis.

View Article and Find Full Text PDF

Background: Meningoencephalitis caused by Escherichia coli is associated with high rates of mortality and risk of neurological sequelae in newborns and infants and in older or immunocompromised adults. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D.

Methods: In vivo, we studied the effects of vitamin D3 on survival and the host's immune response in experimental bacterial meningoencephalitis in mice after intracerebral E.

View Article and Find Full Text PDF

Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the unique immune characteristics of dendritic cells (DCs) in the brain, highlighting their limited presence and lower MHC-II expression compared to those in other organs.
  • Researchers used a mouse model to identify a specific population of cells in the brain that express the DC marker CD11c and traced their origins to bone marrow and local microglia.
  • The experiment demonstrates that brain-derived mononuclear cells maintain a distinct immune profile even when placed in other organ environments, suggesting adaptation is influenced by the brain's unique conditions rather than a fixed origin.
View Article and Find Full Text PDF

Background: Multipotent mesenchymal stem (stromal) cells (MSCs) have been credited with immunomodulative properties, supporting beneficial outcomes when transplanted into a variety of disease models involving inflammation. Potential mechanisms include the secretion of paracrine factors and the establishment of a neurotrophic microenvironment. To test the hypothesis that MSCs release soluble mediators that can attenuate local inflammation, we here analysed the influence of MSCs on the activation of microglia cells, as well as on inflammatory parameters and pain behaviour in a surgical rat model of neuropathic pain.

View Article and Find Full Text PDF