Publications by authors named "Hanieh Montaseri"

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has been investigated as an effective, non-invasive, and alternative tumor-ablative therapy that uses photosensitizers (PSs) and safe irradiation light in the presence of oxygen to generate reactive oxygen species (ROS) to kill malignant cancer cells. However, the off-target activation of the PSs can hinder effective PDT. Therefore, an advanced drug delivery system is required to selectively deliver the PS to the therapeutic region only and reduce off-target side effects in cancer treatment.

View Article and Find Full Text PDF

Procedures for the design of a fluorescence sensor based on molecularly imprinted polymer-capped quantum dots (MIP@QDs) together with the synthesis of quantum dots and MIP@QDS are described. Spherical and monodispersed nanoparticles are suitable for fluorescence sensing of an analyte such as pharmaceuticals and polycyclic aromatic hydrocarbons (PAHs). In addition, excellent optical properties, higher quantum yield, and photoluminescence efficiency as well as easy detection of emission spectra are distinctive advantages of quantum dots as fluorescence sensors.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment, whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensitizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells. The incidence rate of breast cancer (BC) is regularly growing among women, which are currently being treated with methods, such as chemotherapy, radiotherapy, and surgery.

View Article and Find Full Text PDF

Targeted Photodynamic therapy (TPDT) is a non-invasive and site-specific treatment modality, which has been utilized to eradicate cancer tumour cells with photoactivated chemicals or photosensitizers (PSs), in the presence of laser light irradiation and molecular tissue oxygen. Breast cancer is the commonest cancer among women worldwide and is currently treated using conventional methods such as chemotherapy, radiotherapy and surgery. Despite the recent advancements made in PDT, poor water solubility and non-specificity of PSs, often affect the overall effectivity of this unconventional cancer treatment.

View Article and Find Full Text PDF

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution.

View Article and Find Full Text PDF

Triclosan (TCS) is a common antimicrobial found in many personal care products. A large amount of TCS thus enters the wastewater system leading to the accumulation thereof in water sources. In this work, core-shell structured GSH-CdSe/ZnS fluorescent quantum dots (QDs) were synthesized based on organometallic synthesis with a thiol ligand capping agent.

View Article and Find Full Text PDF