The nasal airway comprises a complex network of passages and chambers and plays an important role in regulating the respiratory system's functions. The nasal vestibule is the first chamber of the nasal airway. While variations in nasal vestibule geometries are known to exist between humans, details of their implications on how they may affect the efficacy of nasal drug delivery devices are less clear.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2) is responsible for cell fusion with SARS-CoV viruses. ACE2 is contained in different areas of the human body, including the nasal cavity, which is considered the main entrance for different types of airborne viruses. We took advantage of the roles of ACE2 and the nasal cavity in SARS-CoV-2 replication and transmission to develop a nasal dry powder.
View Article and Find Full Text PDFBackground And Objective: An improved understanding of flow behaviour and particle deposition in the human nasal airway is useful for optimising drug delivery and assessing the implications of pollutants and toxin inhalation. The geometry of the human nasal cavity is inherently complex and presents challenges and manufacturing constraints in creating a geometrically realistic replica. Understanding how anatomical structures of the nasal airway affect flow will shed light on the mechanics underpinning flow regulation in the nasal pharynx and provide a means to interpret flow and particle deposition data conducted in a nasal replica or model that has reduced complexity in terms of their geometries.
View Article and Find Full Text PDFNose-to-brain delivery is increasing in popularity as an alternative to other invasive delivery routes. However, targeting the drugs and bypassing the central nervous system are challenging. We aim to develop dry powders composed of nanoparticles-in-microparticles for high efficiency of nose-to-brain delivery.
View Article and Find Full Text PDFWith the growing demand for the development of intranasal (IN) products, such as nasal vaccines, which has been especially highlighted during the COVID-19 pandemic, the lack of novel technologies to accurately test the safety and effectiveness of IN products in vitro so that they can be delivered promptly to the market is critically acknowledged. There have been attempts to manufacture anatomically relevant 3D replicas of the human nasal cavity for in vitro IN drug tests, and a couple of organ-on-chip (OoC) models, which mimic some key features of the nasal mucosa, have been proposed. However, these models are still in their infancy, and have not completely recapitulated the critical characteristics of the human nasal mucosa, including its biological interactions with other organs, to provide a reliable platform for preclinical IN drug tests.
View Article and Find Full Text PDFA synthetic and thermo-responsive polymer, poly(N-isopropylacrylamide)-co-(polylactide/2-hydroxy methacrylate)-co-(oligo (ethylene glycol)), is used to formulate a universal carrier platform for sustained drug release. The enabling carrier, denoted as TP, is prepared by dissolving the polymer in an aqueous solution at a relatively neutral pH. A wide range of therapeutic moieties can be incorporated without the need for the addition of surfactants, organic solvents, and other reagents to the carrier system.
View Article and Find Full Text PDFRespiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens.
View Article and Find Full Text PDFThe current organ-on-chip platforms used for studying respiratory drug delivery are limited to the administration of drug solutions and suspensions, lacking the in vivo aerosol drug administration and aerosol interaction with the respiratory tract barrier. Moreover, they mostly rely on conventional assays that require sample collection and 'off the chip' analyses, which can be labor-intensive and costly. In this study, a human nasal epithelial mucosa (NEM)-on-a-chip is developed that enables the deposition of aerosolized nasal formulations while emulating realistic shear stresses (0.
View Article and Find Full Text PDFBiofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P.
View Article and Find Full Text PDFDeveloping effective oral inhaled drug delivery treatment strategies for respiratory diseases necessitates a thorough knowledge of the respiratory system physiology, such as the differences in the airway channel's structure and geometry in health and diseases, their surface properties, and mechanisms that maintain their patency. While respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma and their implications on the lower airways have been the core focus of most of the current research, the role of the upper airway in these diseases is less known, especially in the context of inhaled drug delivery. This is despite the fact that the upper airway is the passageway for inhaled drugs to be delivered to the lower airways, and their replicas are indispensable in current standards, such as the cascade impactor experiments for testing inhaled drug delivery technology.
View Article and Find Full Text PDFThe development of novel inhaled formulations in the pre-clinical stage has been impeded by a lack of meaningful information related to drug dissolution and transport at the lung epithelia due to the absence of physiologically relevant in vitro respiratory models. The objective of the present study was to develop an in vitro experimental model, which combined the next generation impactor (NGI) and two respiratory epithelial cell lines, for examining the aerodynamic performance of dry powder inhalers and the fate of aerosolised drugs following lung deposition. The NGI impaction plates of stage 3 (i.
View Article and Find Full Text PDFDeveloping novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow.
View Article and Find Full Text PDFObjectives: A human nasal epithelial mucosa (NEM) on-a-chip is developed integrated with a novel carbon nanofibers-modified carbon electrode for real-time quantitative monitoring of nasal drug delivery. The integration of platinum electrodes in the chip also enables real-time measurement of transepithelial electrical resistance (TEER).
Methods: The air-liquid interface culture of nasal epithelial RPMI 2650 cells in the NEM-on-a-chip was optimized to mimic the key functional characteristics of the human nasal mucosa.
Knowledge that enables the accurate simulation of drug deposition in the human upper airway is necessary to develop robust platforms for efficient drug delivery by inhalation devices. The human upper airway is deformable during inhalation but how it could affect the deposition of inhaled drugs is unknown. We aimed to determine whether pharyngeal deformation at the soft palate level would have any significant effects on throat deposition, in vitro lung dose and fine particle fraction.
View Article and Find Full Text PDFThe integrity of the nasal epithelium plays a crucial role in the airway defence mechanism. The nasal epithelium may be injured as a result of a large number of factors leading to nose bleeds, also known as epistaxis. However, local measures commonly used to treat epistaxis and improve wound healing present several side effects and patient discomfort.
View Article and Find Full Text PDFBackground: The in-situ gelation of thermosensitive nasal formulations with desirable spray characteristics at room temperature and ability to undergo a phase change to a semi-solid state with mucoadhesive behavior at physiological temperature has the potential to efficiently deliver therapeutics to brain. However, their application in nasal spray generation with favorable characteristics has not been investigated.
Methods: Thermosensitive chitosan (CS)-based formulations with different viscosities were prepared for intranasal delivery of ibuprofen using CS of various molecular weights.