Loss of endothelial integrity and vascular leakage are central features of sepsis pathogenesis; however, no effective therapeutic mechanisms for preserving endothelial integrity are available. Here we show that, compared to dermal microvessels, brain microvessels resist infection by Neisseria meningitidis, a bacterial pathogen that causes sepsis and meningitis. By comparing the transcriptional responses to infection in dermal and brain endothelial cells, we identified angiopoietin-like 4 as a key factor produced by the brain endothelium that preserves blood-brain barrier integrity during bacterial sepsis.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (ErbB2/HER2) is a tyrosine kinase receptor that is overexpressed in 25% of primary human breast cancers, as well as in multiple other cancers. HER2-targeted therapies improved progression-free and overall survival in patients with HER2 breast cancers. However, associated resistance mechanisms and toxicity highlight the need for new therapeutic approaches for these cancers.
View Article and Find Full Text PDFutilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified.
View Article and Find Full Text PDFTherapies targeting the tyrosine kinase receptor HER2 have significantly improved survival of patients with HER2 cancer. However, both and acquired resistance remain a challenge, particularly in the brain metastatic setting. Here we report that, unlike other HER tyrosine kinase receptors, HER2 possesses a binding motif in its cytosolic juxtamembrane region that allows interaction with members of the Ezrin/Radixin/Moesin (ERM) family.
View Article and Find Full Text PDFNeisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Since the first description of the epidemic nature of the illness at the dawn of the nineteenth century, the scientific knowledge of meningococcal infection has increased greatly. Major advances have been made in the management of the disease with the advent of antimicrobial therapy and the implementation of meningococcal vaccines.
View Article and Find Full Text PDFBacterial infections are frequently based on the binding of lectin-like adhesins to specific glycan determinants exposed on host cell receptors. These interactions confer species-specific recognition and tropism for particular host tissues and represent attractive antibacterial targets. However, the wide structural diversity of carbohydrates hampers the characterization of specific glycan determinants.
View Article and Find Full Text PDFBacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis.
View Article and Find Full Text PDFNeisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the β2-adrenergic receptor (βAR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown.
View Article and Find Full Text PDFUnlabelled: Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche.
View Article and Find Full Text PDFNeisseria meningitidis is a cause of meningitis epidemics worldwide and of rapidly progressing fatal septic shock. A crucial step in the pathogenesis of invasive meningococcal infections is the adhesion of bloodborne meningococci to both peripheral and brain endothelia, leading to major vascular dysfunction. Initial adhesion of pathogenic strains to endothelial cells relies on meningococcal type IV pili, but the endothelial receptor for bacterial adhesion remains unknown.
View Article and Find Full Text PDFMethylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies.
View Article and Find Full Text PDFNon-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere.
View Article and Find Full Text PDFRNAs have been implicated in the assembly and stabilization of large-scale chromatin structures including centromeric architecture; unidentified RNAs are integral components of human pericentric heterochromatin and are required for localization of the heterochromatin protein HP1 to centromeric regions. Because satellite repeats in centromeric regions are known to be transcribed, we assessed a role for noncoding centromeric RNAs in the structure and function of the centromere. We identified minor satellite transcripts of 120 nt in murine cells that localize to centromeres and accumulate upon stress or differentiation.
View Article and Find Full Text PDFAlthough C2C12 myoblasts express low levels of growth hormone receptor (GHR), we failed to see any effect of exogenous growth hormone (GH) on cell proliferation or differentiation. C2C12 cells stably overexpressing (sixfold) more in GHR (C2C12(GHR)) grew faster than parental cells in media containing 2% serum, and proliferated while parental cells died, in the absence of serum. These effects were independent of exogenous GH but were inhibited by anti-GH and anti-insulin-like growth factor (anti-IGF-1) antibodies, consistent with a local production of GH, which we confirmed by RT-PCR and radioimmunoassay.
View Article and Find Full Text PDFSeveral mechanisms participate in the down-regulation of growth hormone receptor (GHR) signalling under ligand exposure. In CHO cells expressing GHR, we show that ligand stimulation induces degradation of the total cell GHR content. Experiments with 125I-hGH indicate that ligand-bound internalized receptors are not immediately replaced.
View Article and Find Full Text PDF