Publications by authors named "Hania Khoury"

Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S.

View Article and Find Full Text PDF

The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M.

View Article and Find Full Text PDF

Glycerolipidic prodrug is an interesting concept to enhance lymphatic absorption of polar drugs intended to oral delivery such as didanosine (ddI). In order to improve ddI bioavailability, two didanosine glycerolipidic prodrugs, the phosphorylated (ProddIP) and the non-phosphorylated derivatives (ProddINP) were synthesized to follow triglyceride metabolism. The biomimetism approach of these prodrugs has been studied in vitro at two steps.

View Article and Find Full Text PDF

Gemcitabine (2',2'-difluorodeoxyribofuranosylcytosine; dFdC) is an anticancer nucleoside analog active against wide variety of solid tumors. However, this compound is rapidly inactivated by enzymatic deamination and can also induce drug resistance. To overcome the above drawbacks, we recently designed a new squalenoyl nanomedicine of dFdC [4-N-trisnorsqualenoyl-gemcitabine (SQdFdC)] by covalently coupling gemcitabine with the 1,1',2-trisnorsqualenic acid; the resultant nanomedicine displayed impressively greater anticancer activity compared with the parent drug in an experimental murine model.

View Article and Find Full Text PDF

Gemcitabine-squalene is a new prodrug that self-organizes in water forming nanoassemblies. It exhibits better anti-cancer properties in vitro and in vivo than gemcitabine. A liquid chromatography/tandem mass spectrometry assay of gemcitabine-squalene and gemcitabine was developed in human plasma in order to quantitate gemcitabine and its squalene conjugate.

View Article and Find Full Text PDF

A genetic dimorphism encodes for either alanine (Ala) or valine (Val) in the mitochondrial targeting sequence (MTS) of human manganese superoxide dismutase (MnSOD) and has been reported to modulate the risk of some cancers, neurodegenerative diseases and severe alcoholic liver disease. Although functional consequences of this dimorphism on MnSOD activity have not been assessed, computer models predict a partial alpha-helix structure for the Ala-MnSOD/MTS, but a beta-sheet structure for the Val-variant, which could hamper mitochondrial import. To investigate this hypothesis, we studied the in-vitro import of chimaeric proteins composed of either one of the MnSOD/MTS fused to the mouse dihydrofolate reductase (DHFR) protein, and the import of the two human MnSOD precursor variants into rat liver mitochondria.

View Article and Find Full Text PDF