Publications by authors named "Hania Kebir"

We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.

View Article and Find Full Text PDF

is an ancient mineral-herbal mixture containing β-HgS in Tibetan medicine. It is used to treat nervous system diseases, similar to Chinese medicine cinnabar and Indian Ayurveda medicine . However, one of the key problems faced by is that its indications are ambiguous.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system, with limited treatment options for its progressive stages.
  • Astrocytes, a type of glial cell, can both promote and inhibit tissue degeneration and have been shown to increase the expression of the immune checkpoint molecule PD-L1 during inflammation.
  • Research using CRISPR-Cas9 and other methods indicates that the interaction between astrocytic PD-L1 and microglial PD-1 is crucial for reducing inflammation in MS, suggesting this pathway could be a new target for therapy in both acute and progressive forms of the disease.
View Article and Find Full Text PDF

Mice modeling the hemizygous deletion of chromosome 22q11.2 (22qMc) have been utilized to address various clinical phenotypes associated with the disease, including cardiac malformations, altered neural circuitry, and behavioral deficits. Yet, the status of the T cell compartment, an important clinical concern among 22q11.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of coxsackie and adenovirus receptor-like membrane protein (CLMP) in the migration of immune cells into the central nervous system (CNS) of patients with multiple sclerosis (MS), focusing on how it contributes to CNS damage.
  • - Researchers found that CLMP expression was significantly heightened in both the endothelial cells and immune cells of MS patients, particularly in active brain lesions, indicating its involvement in the inflammatory response associated with MS.
  • - Blocking CLMP with specific antibodies reduced immune cell migration across brain endothelial cells in laboratory tests, suggesting that targeting CLMP may offer a potential therapeutic approach for managing MS-related inflammation.
View Article and Find Full Text PDF

Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function.

View Article and Find Full Text PDF

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance.

View Article and Find Full Text PDF
Article Synopsis
  • * Research found that the blood-brain barrier (BBB) is compromised in 22qDS, showing impaired integrity in both lab-grown cells and a mouse model, with increased proinflammatory markers.
  • * The disruption of the BBB leads to increased immune cell migration and activation, suggesting that this immune imbalance may elevate the risk for developing neuropsychiatric diseases in individuals with 22qDS.
View Article and Find Full Text PDF

The concerted actions of the CNS and the immune system are essential to coordinating the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines.

View Article and Find Full Text PDF

Rasmussen's encephalitis (RE) is a chronic inflammatory brain disorder that causes frequent seizures and unilateral hemispheric atrophy with progressive neurological deficits. Hemispherectomy remains the only treatment that leads to seizure freedom for this refractory epileptic syndrome. The absence of an animal model of disease has been a major obstacle hampering the development of effective therapies.

View Article and Find Full Text PDF

In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression.

View Article and Find Full Text PDF

Laquinimod is currently being tested as a therapeutic drug in multiple sclerosis. However, its exact mechanism of action is still under investigation. Tracking of fluorescently-tagged encephalitogenic T cells during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, revealed that laquinimod significantly reduces the invasion of pathogenic effector T cells into the CNS tissue.

View Article and Find Full Text PDF

Astrocytes have important roles in the central nervous system (CNS) during health and disease. Through genome-wide analyses we detected a transcriptional response to type I interferons (IFN-Is) in astrocytes during experimental CNS autoimmunity and also in CNS lesions from patients with multiple sclerosis (MS). IFN-I signaling in astrocytes reduces inflammation and experimental autoimmune encephalomyelitis (EAE) disease scores via the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) and the suppressor of cytokine signaling 2 (SOCS2).

View Article and Find Full Text PDF

Growing evidence supports a role for IL-1 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), but how it impacts neuroinflammation is poorly understood. We show that susceptibility to EAE requires activation of IL-1R1 on radiation-resistant cells via IL-1β secreted by bone marrow-derived cells. Neutrophils and monocyte-derived macrophages (MDMs) are the main source of IL-1β and produce this cytokine as a result of their transmigration across the inflamed blood-spinal cord barrier.

View Article and Find Full Text PDF
Article Synopsis
  • Leukocyte migration into the central nervous system is a key factor in the development of multiple sclerosis, but the specific mechanisms controlling this migration are still unclear.
  • Researchers found that a protein called junctional adhesion molecule-like is significantly increased in the blood-brain barrier and among certain immune cells in multiple sclerosis patients.
  • Blocking this protein reduced the ability of immune cells to migrate, suggesting that junctional adhesion molecule-like could be a potential target for new treatments.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies.

View Article and Find Full Text PDF

Objective: Although Tc17 lymphocytes are enriched in the central nervous system (CNS) of multiple sclerosis (MS) subjects and of experimental autoimmune encephalomyelitis (EAE) animals, limited information is available about their recruitment into the CNS and their role in neuroinflammation. Identification of adhesion molecules used by autoaggressive CD8(+) T lymphocytes to enter the CNS would allow further characterization of this pathogenic subset and could provide new therapeutic targets in MS. We propose that melanoma cell adhesion molecule (MCAM) is a surface marker and adhesion molecule used by pathogenic CD8(+) T lymphocytes to access the CNS.

View Article and Find Full Text PDF

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory perivascular cuffs, consisting of leucocytes, form around post-capillary venules and facilitate their movement into the central nervous system, especially in conditions like multiple sclerosis and experimental autoimmune encephalomyelitis.
  • The expression of extracellular matrix metalloproteinase inducer (CD147) plays a crucial role in the migration of these leucocytes by promoting matrix metalloproteinase production, and its elevation correlates with disease symptoms.
  • Researchers found that CD147 is significantly increased in inflammatory perivascular cuffs, particularly in both murine and human multiple sclerosis samples, and is associated with various immune cell types, indicating its involvement in the disease process.
View Article and Find Full Text PDF

Objective: To define changes in phenotype and functional responses of reconstituting T cells in patients with aggressive multiple sclerosis (MS) treated with ablative chemotherapy and autologous hematopoietic stem cell transplantation (HSCT).

Methods: Clinical and brain magnetic resonance imaging measures of disease activity were monitored serially in patients participating in the Canadian MS HSCT Study. Reconstitution kinetics of immune-cell subsets were determined by flow cytometry, whereas thymic function was assessed using T-cell receptor excision circle analyses as well as flow cytometry measurements of CD31+ recent thymic emigrants (RTEs).

View Article and Find Full Text PDF

In multiple sclerosis, encephalitogenic CD4(+) lymphocytes require adhesion molecules to accumulate into central nervous system inflammatory lesions. Using proteomic techniques, we identified expression of melanoma cell adhesion molecule (MCAM) on a subset of human effector memory CD4(+) lymphocytes and on human blood-brain barrier endothelium. Herein, we demonstrate that MCAM is a stable surface marker that refines the identification of interleukin 17(+), interleukin 22(+), RAR-related orphan receptor γ and interleukin 23 receptor(+) cells within the CD161(+)CCR6(+) subset of memory CD4(+) lymphocytes.

View Article and Find Full Text PDF

Women develop certain autoimmune diseases more often than men. It has been hypothesized that this may relate to the development of more robust T-helper (Th)1 responses in women. To test whether women exhibit a Th1 bias, we isolated naïve cluster of differentiation (CD)4(+) T cells from peripheral blood of healthy women and men and measured the proliferation and cytokine production by these cells in response to submaximal amounts of anti-CD3 and anti-CD28.

View Article and Find Full Text PDF

Objective: Blood-derived myeloid antigen-presenting cells (APCs) account for a significant proportion of the leukocytes found within lesions of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). These APCs along with activated microglia are thought to be pivotal in the initiation of the central nervous system (CNS)-targeted immune response in MS and EAE. However, the exact molecules that direct the migration of myeloid cells from the periphery across the blood-brain barrier (BBB) remain largely unknown.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is composed of tightly bound endothelial cells (ECs) and perivascular astrocytes that regulate central nervous system (CNS) homeostasis. We showed that astrocytes secrete Sonic hedgehog and that BBB ECs express Hedgehog (Hh) receptors, which together promote BBB formation and integrity during embryonic development and adulthood. Using pharmacological inhibition and genetic inactivation of the Hh signaling pathway in ECs, we also demonstrated a critical role of the Hh pathway in promoting the immune quiescence of BBB ECs by decreasing the expression of proinflammatory mediators and the adhesion and migration of leukocytes, in vivo and in vitro.

View Article and Find Full Text PDF

Clonally expanded CD8(+) T lymphocytes are present in multiple sclerosis lesions, as well as in the cerebrospinal fluid of patients with multiple sclerosis. In experimental autoimmune encephalomyelitis, CD8(+) T lymphocytes are found in spinal cord and brainstem lesions. However, the exact phenotype of central nervous system-infiltrating CD8(+) T lymphocytes and the mechanism by which these cells cross the blood-brain barrier remain largely unknown.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuknb7dorihkllmrpe7sqk03mln8vhot1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once