Polypyrrole (Ppy)-modified graphene oxide (GO) electrodes were synthesized for the first time in a choline chloride-phenol-based deep eutectic solvent at various temperatures via electrochemical methods without the addition of any inorganic or organic catalysts. The surface morphologies and structures of the modified films were assessed via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The electrochemical properties and stability of the modified electrodes were investigated via cyclic voltammetry and impedance spectroscopy at various temperatures and scan rates.
View Article and Find Full Text PDFA novel electrochemical sensor for determining trace levels of Hg, Pb, and Zn ions in water using square wave voltammetry (SWV) is reported. The sensor is based on a platinum electrode (Pt) modified by poly(3,4-ethylenedioxythiophene) and , -bis-(carboxymethyl)-l-lysine hydrate (NTA lysine) PEDOT/NTA. The modified electrode surface (PEDOT/NTA) was prepared via the introduction of the lysine-NTA group to a PEDOT/N-hydroxyphthalimide NHP electrode.
View Article and Find Full Text PDFElectroactive films based on conducting polymers have numerous potential applications, but practical devices frequently require a combination of properties not met by a single component. This has prompted an extension to composite materials, notably those in which particulates are immobilised within a polymer film. Irrespective of the polymer and the intended application, film wetting is important: by various means, it facilitates transport processes - of electronic charge, charge-balancing counter ions ("dopant") and analyte/reactant molecules - and motion of polymer segments.
View Article and Find Full Text PDF