Background: Enhancers are non-coding regions of the genome that control the activity of target genes. Recent efforts to identify active enhancers experimentally and in silico have proven effective. While these tools can predict the locations of enhancers with a high degree of accuracy, the mechanisms underpinning the activity of enhancers are often unclear.
View Article and Find Full Text PDFIn the last decades, non-invasive and portable neuroimaging techniques, such as functional near infrared spectroscopy (fNIRS), have allowed researchers to study the mechanisms underlying the functional cognitive development of the human brain, thus furthering the potential of Developmental Cognitive Neuroscience (DCN). However, the traditional paradigms used for the analysis of infant fNIRS data are still quite limited. Here, we introduce a multivariate pattern analysis for fNIRS data, xMVPA, that is powered by eXplainable Artificial Intelligence (XAI).
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
October 2006
In this comment, it will be shown that the backpropagation (BP) equations by Wang et al. are not correct. These BP equations were used to tune the parameters of the antecedent type-2 membership functions as well as the consequent part of the interval type-2 fuzzy neural networks (T2FNNs).
View Article and Find Full Text PDF