Untargeted lipidomics allows analysis of a broader range of lipids than targeted methods and permits discovery of unknown compounds. Previous ring trials have evaluated the reproducibility of targeted lipidomics methods, but inter-laboratory comparison of compound identification and unknown feature detection in untargeted lipidomics has not been attempted. To address this gap, five laboratories analyzed a set of mammalian tissue and biofluid reference samples using both their own untargeted lipidomics procedures and a common chromatographic and data analysis method.
View Article and Find Full Text PDFUntargeted liquid chromatography-mass spectrometry metabolomics studies are typically performed under roughly identical experimental settings. Measurements acquired with different LC-MS protocols or following extended time intervals harbor significant variation in retention times and spectral abundances due to altered chromatographic, spectrometric, and other factors, raising many data analysis challenges. We developed a computational workflow for merging and harmonizing metabolomics data acquired under disparate LC-MS conditions.
View Article and Find Full Text PDFIntroduction/aims: Body mass index (BMI) is linked to amyotrophic lateral sclerosis (ALS) risk and prognosis, but additional research is needed. The aim of this study was to identify whether and when historical changes in BMI occurred in ALS participants, how these longer term trajectories associated with survival, and whether metabolomic profiles provided insight into potential mechanisms.
Methods: ALS and control participants self-reported body height and weight 10 (reference) and 5 years earlier, and at study entry (diagnosis for ALS participants).
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease lacking effective treatments. This is due, in part, to a complex and incompletely understood pathophysiology. To shed light, we conducted untargeted metabolomics on plasma from two independent cross-sectional ALS cohorts versus control participants to identify recurrent dysregulated metabolic pathways.
View Article and Find Full Text PDFUntargeted metabolomics is an essential component of systems biology research, but it is plagued by a high proportion of detectable features not identified with a chemical structure. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments produce spectra that can be searched against databases to help identify or classify these unknowns, but many features do not generate spectra of sufficient quality to enable successful annotation. Here, we explore alterations to gradient length, mass loading, and rolling precursor ion exclusion parameters for reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) that improve compound identification performance for human plasma samples.
View Article and Find Full Text PDFPurpose: Short-term surgical missions can provide communities in need with desired expertise; however, it is uncertain who will manage the complications after visiting experts leave. Poor outcomes, decreased patient satisfaction, and tension on the healthcare system develop when local providers, often excluded from the initial patient care, are unable to cope with subsequent morbidity.
Methods: Two-year retrospective review of pediatric general, plastic, and reconstructive surgery, and urology cases performed by a relief organization in the developing world.
Motivation: When metabolites are analyzed by electrospray ionization (ESI)-mass spectrometry, they are usually detected as multiple ion species due to the presence of isotopes, adducts and in-source fragments. The signals generated by these degenerate features (along with contaminants and other chemical noise) obscure meaningful patterns in MS data, complicating both compound identification and downstream statistical analysis. To address this problem, we developed Binner, a new tool for the discovery and elimination of many degenerate feature signals typically present in untargeted ESI-LC-MS metabolomics data.
View Article and Find Full Text PDF