Publications by authors named "Hani Boshra"

The recombinant expression and purification of viral proteins are a key component in the study of the immune response of viruses, as well as the creation of diagnostic techniques for the detection of viruses. For structurally simple proteins, one commonly used technique is the production of recombinant proteins in bacterial expression systems, which enable the large-scale synthesis and purification of recombinant viral proteins. In this technique, the cDNA encoding for a viral protein is cloned into a bacterial expression vector (with an appropriate purification tag), produced in a modified bacterial culture, and optimized for maximum protein production in a minimal amount of time.

View Article and Find Full Text PDF
An Introduction to the Bunyaviruses.

Methods Mol Biol

December 2024

The bunyaviruses are an ever-expanding group of RNA viruses that have been linked to a variety of different diseases around the world. First characterized nearly a century ago, over 500 different types of bunyaviruses have been characterized thus far, with hosts ranging from mammals to plants to single-celled organisms. As many of the currently described bunyaviruses have been found to be vector-borne, with transmission being mediated by either insects or rodents, these viruses have incorporated immune-evasive molecules into their relatively small genome.

View Article and Find Full Text PDF

Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox.

View Article and Find Full Text PDF
Article Synopsis
  • * These viruses are categorized as BSL4 pathogens and have been studied for nearly 30 years, with only 5 known members but evidence of additional, unidentified henipaviruses found through metagenomics.
  • * This review focuses on the current understanding of henipaviruses, especially regarding their viral tropism, which refers to their preference for infecting specific species, organs, and cell types.
View Article and Find Full Text PDF

Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants.

View Article and Find Full Text PDF

The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is commonly used to generate capripoxvirus knockout viruses (KO), and is based on the targeting of a particular viral gene of interest. This technique can also be used to insert a gene of interest.

View Article and Find Full Text PDF

Schmallenberg virus (SBV), an arthropod-transmitted pathogenic bunyavirus, continues to be a threat to the European livestock industry, causing morbidity and mortality among young ruminant livestock. Here, we describe a novel SBV subunit vaccine, based on bacterially expressed SBV nucleoprotein (SBV-N) administered with a veterinary-grade Saponin adjuvant. When assayed in an IFNAR mouse model, SBV-N with Saponin induced strong non-neutralizing broadly virus-reactive antibodies, decreased clinical signs, as well as significantly reduced viremia.

View Article and Find Full Text PDF

CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs () lack CD59, at least on erythrocytes.

View Article and Find Full Text PDF

Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.

View Article and Find Full Text PDF

Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula.

View Article and Find Full Text PDF

The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest.

View Article and Find Full Text PDF

Sheep and goat pox continue to be important livestock diseases that pose a major threat to the livestock industry in many regions in Africa and Asia. Currently, several live attenuated vaccines are available and used in endemic countries to control these diseases. One of these is a partially attenuated strain of lumpy skin disease virus (LSDV), KS-1, which provides cross-protection against both sheep pox and goat pox.

View Article and Find Full Text PDF

Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models.

View Article and Find Full Text PDF

Five different viral diseases of livestock, lumpy skin disease (LSD), sheep pox (SPP), goat pox (GTP), Rift Valley fever (RVF) and peste des petits ruminants (PPR), circulate in the same regions of Africa, imposing a major burden on economic activity and public health. While commercial vaccines against these viruses are available, the cost of implementing regular vaccination regimens against multiple diseases is prohibitive for most African farmers. A single, affordable multivalent vaccine that simultaneously protects against all 5 diseases would therefore be of significant benefit to the livestock sector in Africa.

View Article and Find Full Text PDF

A multiplex bead-based suspension array was developed that can be used for the simultaneous detection of antibodies against the surface glycoprotein Gn and the nucleocapsid protein N of Rift Valley fever virus (RVFV) in various animal species. The N protein and the purified ectodomain of the Gn protein were covalently linked to paramagnetic Luminex beads. The performance of the resulting multiplex immunoassay was evaluated by testing a comprehensive and well-characterized panel of sera from sheep, cattle and humans.

View Article and Find Full Text PDF

Current vaccine candidates against Rift Valley fever virus (RVFV) incorporate the viral structural glycoproteins as antigens, since triggering antibody responses against them usually correlates with protection. Here, we have focused solely on the nucleoprotein of RVFV as a potential target for vaccine development. Previous studies in mouse models have already demonstrated that RVFV nucleoprotein can elicit partial protection when administered by means of a DNA vaccine or in recombinant, soluble, protein form.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health.

View Article and Find Full Text PDF

This paper describes the generation of monoclonal antibodies directed to immunogenic nucleoprotein N epitopes of Rift Valley fever virus (RVFV), and their application in diagnostics, both for antibody detection in competitive ELISA and for antigen capture in a sandwich ELISA. Monoclonal antibodies (mAbs) were generated after DNA immunization of Balb/c mice and characterized by western blot, ELISA and cell immunostaining assays. At least three different immunorelevant epitopes were defined by mAb competition assays.

View Article and Find Full Text PDF

In this work, plasmid constructs encoding two different M segment ORFs, as well as the nucleoprotein N, have been used in different vaccination regimes to test protection against a RVFV-MP12 virus challenge in a transgenic mouse model with impaired interferon type I response (IFNAR(-/-)). We obtained dose dependent protection in animals immunized with a construct encoding both mature glycoproteins (pCMV-M4), whereas only partial protection in animals vaccinated with either N construct (pCMV-N) or a combination of both plasmids (pCMV-M4+pCMV-N). The protection elicited by the expression of the mature glycoproteins could be directly related to the induction of neutralizing antibodies against them.

View Article and Find Full Text PDF

Fish embryos and hatchlings are exposed to pathogens long before maturation of their lymphoid organs. Little is known about defence mechanisms during the earliest stages of life, but innate mechanisms may be essential for survival. The complement system in fish is well developed and represents a major part of innate immunity.

View Article and Find Full Text PDF

The present paradigm dictates that phagocytosis is accomplished mainly by 'professional' phagocytes (such as macrophages and monocytes), whereas B cells lack phagocytic capabilities. Here we demonstrate that B cells from teleost fish have potent in vitro and in vivo phagocytic activities. Particle uptake by B cells induced activation of 'downstream' degradative pathways, leading to 'phagolysosome' formation and intracellular killing of ingested microbes.

View Article and Find Full Text PDF

Defense mechanisms in developing fish are poorly known but before maturation of lymphoid organs and immunocompetence, innate mechanisms are essential. The complement system represents a major part of innate immunity. Our main objective was to map the presence of complement components early in fish development.

View Article and Find Full Text PDF

Virtually nothing is known about the structure, function, and evolutionary origins of the C3aR in nonmammalian species. Because C3aR and C5aR are thought to have arisen from the same common ancestor, the recent characterization of a C5aR in teleost fish implied the presence of a C3aR in this animal group. In this study we report the cloning of a trout cDNA encoding a 364-aa molecule (TC3aR) that shows a high degree of sequence homology and a strong phylogenetic relationship with mammalian C3aRs.

View Article and Find Full Text PDF

Activation of the complement system can lead to the formation of the membrane attack complex, in which the component C5 is cleaved into C5a and C5b fragments. The C5a anaphylatoxin is a very potent pro-inflammatory molecule that induces chemotaxis and respiratory burst processes in a variety of mammalian leucocytes. While C5a has been well studied in mammals, little is known about the structure and function of C5a in teleost fish or other non-mammalian species.

View Article and Find Full Text PDF

There is growing evidence that certain components of complement systems in lower vertebrates are promiscuous in their modes of activation through the classical or alternative pathways. To better understand the evolution of the classical pathway, we have evaluated the degree of functional diversification of key components of the classical and alternative pathways in rainbow trout, an evolutionarily relevant teleost species. Trout C4 was purified in two distinct forms (C4-1 and C4-2), both exhibiting the presence of a thioester bond at the cDNA and protein levels.

View Article and Find Full Text PDF