Asteraceae presents one of the most globally prevalent, cultivated, and fundamental plant families. However, a large amount of agricultural wastes has been yearly released from Asteraceae crops, causing adverse impacts on the environment. The objective of this work is to have insights into their biomass potentials and technical possibility of conversion into biochars.
View Article and Find Full Text PDFThe potential of green nanomaterials for environmental and agricultural fields is emerging due to their biocompatible, eco-friendly, and cost-effective performance. We report the use of Canna indica flowers extract as new capping and stabilizing source to bio-fabricate ZnO nanoparticles (ZnO NPs for dyes removal, seed germination. ZnO NPs was biosynthesized by ultrasound-assisted alkaline-free route to reach the critical green strategy.
View Article and Find Full Text PDFAquatic contamination of diclofenac (DCF), an emergent non-steroidal anti-inflammatory drug (NSAIDs), can result in adverse effects to many ecosystems through biomagnification. Hence, introducing effective remediation techniques to sequester the pharmaceutical wastes is highly fundamental to prevent their accumulation in the environment. Generally, adsorption has been presented as a green and efficient approach.
View Article and Find Full Text PDFHerein, we described a tunable method for synthesis of novel hollow mesoporous carbon (MPC) via direct pyrolysis (800C) of MIL-53 (Fe) as a self-sacrificed template. The structural characterization revealed a hollow, amorphous, defective and mesoporous MPC along with high surface area (approx. 200 m g).
View Article and Find Full Text PDFIn this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design-Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5-15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05-0.
View Article and Find Full Text PDFHerein, a facile strategy to fabricate the novel manganese oxide-imprinted mesoporous carbons (MOPCx, x presents for pyrolysis temperature) was described via the direct pyrolysis of Mn(BDC)(DMF) (BDC = 1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide) as a self-sacrificed template at various temperatures (x = 550, 750, and 950 C). The characterization results demonstrated the existence of MnO embedded in carbon structures with different morphologies, and enhancing surface areas (249.86-294.
View Article and Find Full Text PDFChloramphenicol (CAP) is commonly employed in veterinary clinics, but illegal and uncontrollable consumption can result in its potential contamination in environmental soil, and aquatic matrix, and thereby, regenerating microbial resistance, and antibiotic-resistant genes. Adsorption by efficient, and recyclable adsorbents such as mesoporous carbons (MPCs) is commonly regarded as a "green and sustainable" approach. Herein, the MPCs were facilely synthesized via the pyrolysis of the metal⁻organic framework Fe₃O(BDC)₃ with calcination temperatures ( °C) between 600 and 900 °C under nitrogen atmosphere.
View Article and Find Full Text PDF