Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.
View Article and Find Full Text PDFThe voltage-gated sodium channel Na1.7 has received much attention from the scientific community due to compelling human genetic data linking gain- and loss-of-function mutations to pain phenotypes. Despite this genetic validation of Na1.
View Article and Find Full Text PDFHerein we describe the discovery, optimization, and structure-activity relationships of novel potent pyrrolopyrimidine Na(v)1.7 antagonists. Hit-to-lead SAR studies of the pyrrolopyrimidine core, head, and tail groups of the molecule led to the identification of pyrrolopyrimidine 48 as exceptionally potent Na(v)1.
View Article and Find Full Text PDFHerein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity.
View Article and Find Full Text PDFClinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays.
View Article and Find Full Text PDFClinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.
View Article and Find Full Text PDFIn mammalian cells, the aurora kinases (aurora-A, -B, and -C) play essential roles in regulating cell division. The expression of aurora-A and -B is elevated in a variety of human cancers and is associated with high proliferation rates and poor prognosis, making them attractive targets for anticancer therapy. AMG 900 is an orally bioavailable, potent, and highly selective pan-aurora kinase inhibitor that is active in taxane-resistant tumor cell lines.
View Article and Find Full Text PDFThe first general method for the palladium-catalyzed Suzuki-Miyaura and carbonyl enolate coupling of unactivated aryl arenesulfonates was developed utilizing XPhos, 1, and Pd(OAc)2. This is of significant interest because aryl tosylates and aryl benzenesulfonates are more easily handled and considerably less expensive than aryl triflates. This catalyst system effects the coupling of a variety of aryl, heteroaryl, and extremely hindered arylboronic acids with different aryl tosylates, under mild conditions.
View Article and Find Full Text PDFBulky trialkylsilyl-protected alkynes such as triethylsilyl (TES), tert-butyldimethylsilyl (TBS), and triisopropylsilyl (TIPS) acetylenes underwent the Cadiot-Chodkiewicz cross-coupling reaction with different bromoalkynes to form a variety of synthetically useful unsymmetrical diynes in good yields. The diyne alcohol 10 was transformed regio- and stereoselectively into enynes by hydrotelluration, carbometalation, and reduction reactions.
View Article and Find Full Text PDFA novel electrotelluration process is described in which a Michael addition of an alkyl or aryl tellurolate anion occurs onto an activated alkyne with subsequent trapping of a vinyl anion with electrophiles (aldehydes and ketones) other than a proton. This process provides an efficient regio- and stereospecific route to tri- and tetrasubstituted alkenes. Methodologically significant examples of this chemistry were studied in which aryl and alkyl tellurolate anions were added to omega-keto alkynyl esters in a Michael reaction, and the incipient vinyl anions were trapped intramolecularly by the internal aldehydes.
View Article and Find Full Text PDF