A dinuclear Fe(II) spin crossover (SCO) complex with the formula [FeL(NCS)]·2DMF·2HO (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.
View Article and Find Full Text PDFHere, we demonstrate deep-blue carbon dots (CDs) with luminescence centered at 415 nm and PLQY exceeding 60% nitrogen doping. A bright and high-color-purity CDs-based light-emitting diode (CLED) is achieved with an external quantum efficiency (EQE) of 1.74%, a maximum luminance of 1155.
View Article and Find Full Text PDFNowadays, nitrogen is mainly produced from air by cryogenic separation, pressure-swing adsorption (PSA) and polymeric membrane technology. In this paper, we report a perovskite membrane-based nitrogen production route, which is basically driven by methane combustion. By coupling air separation with methane combustion on the opposite sides of oxygen-permeable perovskite membrane, most of oxygen in air is efficiently removed through the perovskite membrane and then consumed by methane oxidation.
View Article and Find Full Text PDFCancer nanotheranostics combining therapeutic and imaging functions within a single nanoplatform are extremely important for nanomedicine. In this study, carbon dots (C-dots) with intrinsic theranostic properties are prepared by using polythiophene benzoic acid as carbon source. The obtained C-dots absorb light in the range of 400-700 nm and emit bright fluorescence in the red region (peaking from 640 to 680 nm at different excitations).
View Article and Find Full Text PDFClinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen ((1)O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce (1)O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents.
View Article and Find Full Text PDFVolvox-like Cdx Zn1-x S solid solutions with a cubic zinc blend structure were synthesized through a template-free ethylene glycol process. Cd(Ac)2 ⋅2 H2 O, Zn(Ac)2 ⋅2 H2 O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox-like spherical geometry, but also exerted vigorous domination for existence of cubic-phase Cdx Zn1-x S nanostructures.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2013
Various nanostructures of 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H2TCPP) can be easily synthesized by a surfactant-assisted self-assembly (SAS) method at different temperatures. When the DMF solution of porphyrin monomer was injected into cetyltimethylammonium bromide (CTAB) aqueous solution by a syringe, diverse H2TCPP nanostructures dependent on the different temperatures, including hollow nanospheres, solid nanospheres and nanospheres with holes, were successfully obtained. As a result, the suitable concentration of the CTAB aqueous solution used to form nanostructues of porphyrin ranges from 0.
View Article and Find Full Text PDF